函数图 卷积神经网络_图卷积神经网络(GCN)

19531868d40e015bee20bb3bb0295bc8.png

1.GCN起源

出现原因

神经网络在各种传统任务上都体现出了惊人的效果,如:CNN系列在图像领域的结果、RNN系列在序列数据上表现出的效果。而使用较为广泛的图数据却很少有相应的模型供我们直接使用。

为什么火的是图卷积神经网络,而不是图循环神经网络

卷积神经网络实质上是从一个小范围的节点/像素特征中通过卷积核学习提取到深层次空间特征,进而得到最终结果的过程(稀疏交互、参数共享、平移不变性),这个思想移植到图中是有可能的(但由于图数据是不规则的,平移不变性不适用于图数据)。循环神经网络实质是学习序列数据的演变情况,但是对图中节点进行排序是很困难的,没有统一的标准,所以不大适用。

传统卷积神经网络为什么不能直接用于图数据

传统卷积神经网络中的卷积操作如下图所示,右图3*3卷积核对应着左图黄色区域的9个像素点,而这9个像素点实质上是有序的,即可以从左上到右下对这9个像素点编号为1-9,对应着卷积核的9个参数。但是在图数据中,学习一个节点的深层特征势必是通过其邻居节点,而邻居节点的数量并不能像图像数据一样是固定的。此外,即使邻居节点的数据固定,假设为9,也无法像下图一样,对9个邻居节点排序对应9个卷积核中的参数。

8066c7d11cb7839d1a29b6cd582c0d1c.png
左图是图像像素矩阵,右图是卷积核

图卷积神经网络分类

图卷积神经网络分为基于空间域的图卷积神经网络和基于谱域的图卷积神经网络。前者貌似还没有开源,可能是效果不太理想,这里就不做介绍,主要介绍基于谱域的图卷积神经网络。

2.傅里叶变换与谱图理论

从传统的傅里叶变换到图数据的傅里叶变换

这里不对傅里叶变换的细节和各种公式推导做详解,只对其思想做简单的描述。傅里叶变换的经典解释就是将时间方向变化的时域信号,转换为频率方向变化的频域信号,如下图所示。

cb81847a5732e841bcfc4e6cb4bd279e.png

这里的时域信号和频域信号实质上是指同一种信号在不同维度下的表现形式。可以简单理解为对于同一个西瓜,你既可以从它好不好吃的角度看,也可以从它的色泽根蒂纹路来看。只不过在时域和频域这两个观察角度中,日常大多数都是从时域的角度,随着时间的推移来观察,所以更加熟悉(类似于瓜好不好吃)。对于频域的角度,指的是任意一个周期函数都可以通过若干个cos,

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值