1.
因式分解法
因式分解
法不是对所有的三次方程都适用
,只对一些三次方程适用
.对于大多数
的三次方程,
只有先求出它的根,才能作因式
分解.当然,因式分解的解法
很简便,
直接把三次方
程降次.例如:
解方程
x^3-x=0
对左边作
因式分解,得
x(x+1)(x-1)=0,
得方程的三个根:
x1=0,x2=1,x3=-1.
2.
另一种换元法
对于一般
形式的三次方程,
先用上文中提到
的配方和换元,
将方程化为
x+px+q=0
的
特
殊
型
.
令
x=z-p/3z,
代
入
并
化
简
,
得
:
z-p/27z+q=0.
再
令
z=w,
代
入
,
得
:
w+p/27w+q=0
.这实际上是关于
w
的二次方程.解出
w,
再顺次解出
z,x.
3.
盛金公式解题法
三次方程
应用广泛。用根号解
一元三次方程
,虽然有著
名的卡尔丹公式,并有相
应的判别法,但使用卡
尔丹公式解题比较复杂,缺乏直观性。
范盛金
推导出一套直接
用
a
、
b
、
c
、
d
表达的较简明形式的
一元三次方程的一般式新求根公
式,并建立了新
判别法.
盛金公式
一元三次
方程
aX^3
+
bX^2
+
c
X
+
d=0
,
(
a
,
b
,
c
,
d
∈
R
,且
a≠0
)
。
重根
判别
式
:
A=b^2
-
3ac
;
B=bc
-
9ad
;
C=c
^2
-
3bd
,
总判别式
:
Δ=B^2
-
4AC
。
当
A=B=0
时,
盛金公式
①:
X1=X2=X3=
-
b/(3a)=
-
c/b=
-
3d/c
。
当
Δ=B^2
-
4AC>0
时
,盛金公式②:
X1=(
-
b
-
(Y1)^(1/3)
-
(Y2)^(1/3))/(3a)
;
X2
,
3=(
-
2b
+
(Y1)^(1/3)
+
(Y2)^(1/3))/(6a)±
i3^(1/2)((Y1)^(1/3)
-
(Y2)^(1/3))/(6a)
,
其中
Y1
,
2=Ab
+
3a(
-
B±
(B^2
-
4AC)^(1/2))/2
,
i^2=
-
1
。
当
Δ=B^2
-
4AC=0
时
,盛金公式③:
X1=
-
b/a
+
K
;
X2=X3=
-
K/2
,
其中
K=B/A
,
(A≠0)
。