一元三次方程重根判别式_一元三次方程的根的探究

本文介绍了求解一元三次方程的几种方法,包括因式分解法、换元法和盛金公式。重点讨论了盛金公式及其对应的重根判别式,提供了不同判别情况下的解题公式,帮助理解一元三次方程的解法。
摘要由CSDN通过智能技术生成

1.

因式分解法

因式分解

法不是对所有的三次方程都适用

,只对一些三次方程适用

.对于大多数

的三次方程,

只有先求出它的根,才能作因式

分解.当然,因式分解的解法

很简便,

直接把三次方

程降次.例如:

解方程

x^3-x=0

对左边作

因式分解,得

x(x+1)(x-1)=0,

得方程的三个根:

x1=0,x2=1,x3=-1.

2.

另一种换元法

对于一般

形式的三次方程,

先用上文中提到

的配方和换元,

将方程化为

x+px+q=0

x=z-p/3z,

z-p/27z+q=0.

z=w,

w+p/27w+q=0

.这实际上是关于

w

的二次方程.解出

w,

再顺次解出

z,x.

3.

盛金公式解题法

三次方程

应用广泛。用根号解

一元三次方程

,虽然有著

名的卡尔丹公式,并有相

应的判别法,但使用卡

尔丹公式解题比较复杂,缺乏直观性。

范盛金

推导出一套直接

a

b

c

d

表达的较简明形式的

一元三次方程的一般式新求根公

式,并建立了新

判别法.

盛金公式

一元三次

方程

aX^3

bX^2

c

X

d=0

(

a

b

c

d

R

,且

a≠0

)

重根

判别

A=b^2

3ac

B=bc

9ad

C=c

^2

3bd

总判别式

Δ=B^2

4AC

A=B=0

时,

盛金公式

①:

X1=X2=X3=

b/(3a)=

c/b=

3d/c

Δ=B^2

4AC>0

,盛金公式②:

X1=(

b

(Y1)^(1/3)

(Y2)^(1/3))/(3a)

X2

3=(

2b

(Y1)^(1/3)

(Y2)^(1/3))/(6a)±

i3^(1/2)((Y1)^(1/3)

(Y2)^(1/3))/(6a)

其中

Y1

2=Ab

3a(

(B^2

4AC)^(1/2))/2

i^2=

1

Δ=B^2

4AC=0

,盛金公式③:

X1=

b/a

K

X2=X3=

K/2

其中

K=B/A

(A≠0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值