
点击上方蓝字"8020同学社"关注我们哦!

方法一:选择合适的方法解一元二次方程
方法名称 | 适用范围 | 说明 |
直接开平方法 | 形如x2=p或(mx+n)2=P(p≥0) | 方程没有一次项时用直接开平方 法较为简单(最直接的方法) |
配方法 | 适合所有一元二次方程 | 二次项系数为1,一次项系数为偶数时,用此方法较为简单(最基本的方法) |
公式法 | 适合所有一元二次方程 | 配方法和公式法中,当各项系数均为整数,且较小时,首选公式法(万能方法) |
因式分解法 | 一边为0,另一边易于分解成两个一次因式的积的形式的一元二次方程 | 方程没有一次项时用因式分解法较为简单;当方程中含有括号时,不要急于去括号,应观察是否能看作整体,直接因式分解(最简单的方法) |
【温馨提示】

在没有规定解法时,解一元二次方程可以按下列次序选择解法:直接开平方法→因式分解法→公式法→配方法.
Q:
例1用适当的方法解下列方程
(1))3x2-2x-2=0;(2)(x-1)2=3;
(3)2(x-3)=3x(x-3);(4)x2-2x=4
A:
解析(1)∵a=3,b=-2,c=-2,
∴b2-4ac=(-2)2-4×3×(-2)=28>0
(3) 移项得2(x-3) -3x(x-3)=0因式分解得(2-3x)(x-3)=0,
2-3x=0或x-3=0

方法二:配方法在二次三项式中的应用方法
在二次三项式中应用配方法与一元二次方程的配方法类似,但也有不同:
(1) 化二次项系数为1.当二次项系数不是1时,可提取次项系数,但不能像解方程那样,除以二次项系数(因为二次三项式配方是恒等变形,而配方法解一元二次方程是同解变形).
(2) 加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此二次三项式的值不变,故在加的同时,还要减去一次项系数一半的平方.
(3) 配方后将原二次三项式化为a(x+m)2+n(a≠0)的形式.
Q:
例2阅读材料:把形如ax2+bx+c的二次三项式(或其部分)配成完全平方式的方法叫做配方法配方法是完全平方公式的逆用,即a2±2b+b2=(a±b)2.
的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少写出两种形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.
A:
(1)x2-4x+2=(x-2)2-2

方法三:一元二次方程根的判别式的应用方法
一元二次方程根的判别式的应用主要有以下三种情况:
(1)不解方程,由根的判别式直接判断根的情况;
(2)根据方程根的情况,确定方程中字母系数的取值范围;
(3)应用根的判别式证明方程根的情况(无实根、有两个不相等的实根、有两个相等的实根).
Q:
例3(1)关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,那么k的取值范围是____.
(2)关于x的方程ax2-2x-1=0有实数根,则a的取值范围是____.
(3)关于x的一元二次方程x2+(2m+1)x+m2-2=0有两个实数根,则m的最小整数解是____.
A:
解(1)∵关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,
∴k≠0且△=(-3)2-4×k×(-1)>0,
∴△=4+4a≥0,∴a≥-1;
当a=0时,-2x-1=0有实数根,符合题意,
故a的取值范围为a≥-1.
(3) ∵关于x的一元二次方程x2+(2m+1)x+m2-2=0有两个实数根,
△=(2m+1)2-4×1×(m2-2)≥0,
【温馨提示】

①根据一元二次方程根的情况确定字母参数或取值范围时,不要忽略隐含条件二次项系数不为0,否则这个参数的取值范围会增大,导致解题错误.
②对于形如ax2+bx+c=0的方程有实数根的问题要从a=0和a≠0两个方面去考虑.

方法四:一元二次方程根与系数的关系的应用方法
利用一元二次方程根与系数的关系求关于其根x1、x2的代数式的值的关键是把所给的代数式经过恒等变形,化为含x1+x2,x1x2的形式,然后把x1+x2,x1x2的值整体代入,即可求出所求代数式的值.
Q:
例4若a,b,是一元二次方程3x2+2x-9=0的两根,则
A:
Q:
例5一元二次方程x2-4x+2=0的两根为x1,x2,则x12-4x1+2x1x2的值为____.
A:
解 ∵一元二次方程x2-4x+2=0的两根为x1,x2,
∴x1-4x1=-2,x1x2=2
x12-4x1+2x1x2=-2+2×2=2
答案2
