一元三次方程重根判别式_解一元二次方程方法技巧

本文介绍了四种解一元二次方程的方法:直接法、配方法、根的判别式应用及根与系数的关系。通过例题详细阐述了每种方法的步骤,并给出了解题关键提示,帮助读者掌握解题技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

76e21f47cced6239a76c9ce39d6a2083.gif

点击上方蓝字"8020同学社"关注我们哦!

8118d189c213bdbe93962c4775635ff4.png

方法一:选择合适的方法解一元二次方程

方法名称

适用范围

说明

直接开平方法    

形如x2=p或(mx+n)2=P(p≥0)

方程没有一次项时用直接开平方

法较为简单(最直接的方法)

配方法      

适合所有一元二次方程

二次项系数为1,一次项系数为偶数时,用此方法较为简单(最基本的方法)

公式法     

适合所有一元二次方程

配方法和公式法中,当各项系数均为整数,且较小时,首选公式法(万能方法)

因式分解法     

一边为0,另一边易于分解成两个一次因式的积的形式的一元二次方程

方程没有一次项时用因式分解法较为简单;当方程中含有括号时,不要急于去括号,应观察是否能看作整体,直接因式分解(最简单的方法)

【温馨提示】

9a54440e3f624f08ab8444c9a4fb3c18.png

在没有规定解法时,解一元二次方程可以按下列次序选择解法:直接开平方法→因式分解法→公式法→配方法. 

Q:

例1用适当的方法解下列方程

(1))3x2-2x-2=0;(2)(x-1)2=3;

(3)2(x-3)=3x(x-3);(4)x2-2x=4 

A:

解析(1)∵a=3,b=-2,c=-2,

b2-4ac=(-2)2-4×3×(-2)=28>0

f6cc047ede4c7a21e4ac3e059baac729.png                                             

(3) 移项得2(x-3) -3x(x-3)=0因式分解得(2-3x)(x-3)=0,

2-3x=0或x-3=0

dc58674270ecdc22a8d6276d172f0759.png

f40c859a5e18ebae7c24a9fc157b24a4.png

8118d189c213bdbe93962c4775635ff4.png

方法二:配方法在二次三项式中的应用方法

在二次三项式中应用配方法与一元二次方程的配方法类似,但也有不同:

(1) 化二次项系数为1.当二次项系数不是1时,可提取次项系数,但不能像解方程那样,除以二次项系数(因为二次三项式配方是恒等变形,而配方法解一元二次方程是同解变形).

(2) 加上一次项系数一半的平方,使其中的三项成为完全平方式,但又要使此二次三项式的值不变,故在加的同时,还要减去一次项系数一半的平方.

(3) 配方后将原二次三项式化为a(x+m)2+n(a≠0)的形式.

Q:

例2阅读材料:把形如ax2+bx+c的二次三项式(或其部分)配成完全平方式的方法叫做配方法配方法是完全平方公式的逆用,即a2±2b+b2=(a±b)2.

                                             d9d0e279c7a8c9eb473bf11e8ee9bc16.png

的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).

请根据阅读材料解决下列问题:

(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;

(2)将a2+ab+b2配方(至少写出两种形式);

(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.

A:

(1)x2-4x+2=(x-2)2-2 

25c644cf4862bd25e9b5fb2428e66079.png                                             

8118d189c213bdbe93962c4775635ff4.png

方法三:一元二次方程根的判别式的应用方法

一元二次方程根的判别式的应用主要有以下三种情况:

(1)不解方程,由根的判别式直接判断根的情况;

(2)根据方程根的情况,确定方程中字母系数的取值范围;

(3)应用根的判别式证明方程根的情况(无实根、有两个不相等的实根、有两个相等的实根).

Q:

例3(1)关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,那么k的取值范围是____.

(2)关于x的方程ax2-2x-1=0有实数根,则a的取值范围是____.

(3)关于x的一元二次方程x2+(2m+1)x+m2-2=0有两个实数根,则m的最小整数解是____.

A:

解(1)∵关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,

k≠0且△=(-3)2-4×k×(-1)>0,                                             1bace7772a11c7ae80c3554a56f5719f.png

∴△=4+4a≥0,∴a≥-1;

a=0时,-2x-1=0有实数根,符合题意,

a的取值范围为a≥-1.

(3) ∵关于x的一元二次方程x2+(2m+1)x+m2-2=0有两个实数根,

△=(2m+1)2-4×1×(m2-2)≥0, 

d400868c11e241509963b2f3037745b0.png

【温馨提示】

9a54440e3f624f08ab8444c9a4fb3c18.png

①根据一元二次方程根的情况确定字母参数或取值范围时,不要忽略隐含条件二次项系数不为0,否则这个参数的取值范围会增大,导致解题错误.

②对于形如ax2+bx+c=0的方程有实数根的问题要从a=0和a≠0两个方面去考虑.

8118d189c213bdbe93962c4775635ff4.png

方法四:一元二次方程根与系数的关系的应用方法

利用一元二次方程根与系数的关系求关于其根x1x2的代数式的值的关键是把所给的代数式经过恒等变形,化为含x1+x2x1x2的形式,然后把x1+x2x1x2的值整体代入,即可求出所求代数式的值.

Q:

例4若a,b,是一元二次方程3x2+2x-9=0的两根,则

43f347737d625d9b48a4153784d1016a.png

A:

e832ea96705495f7be9f297b760efc3d.png

56ef034e5546397fd5c5c5cb9efcbfd8.png

Q:

例5一元二次方程x2-4x+2=0的两根为x1x2,则x12-4x1+2x1x2的值为____.

A:

解 ∵一元二次方程x2-4x+2=0的两根为x1x2

x1-4x1=-2,x1x2=2

x12-4x1+2x1x2=-2+2×2=2

答案2

32c1c5cfea634489be100abe22510b41.png

0d88fb0674843c5576e96c42d1a593e7.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值