一元三次方程重根判别式_初等代数:三次方程的解法

fab335f8fdd2c03aae5240820b292090.png

一、三次方程的变形[1]

关于

的三次方程的一般形式:

方程系数除以

,使得三次项
的系数为1,得:

来替代
,得:

,使得二次项
的系数为0,得三次方程的特殊形式:

此处有:

.

解出

即可得到

二、Cardano公式的一般形式[1]

,代入
得:

不妨做如下构造:

由韦达定理可知,

是关于
的二次方程

的两个实根:

,此处判别式

或者两个共轭虚根:

,此处判别式

关于

的原三次方程
则有三个根:

即为Cardano公式的一般形式.此处有

.

三、Cardano公式的分类讨论[1]

1、判别式

时,关于
的二次方程
有两个相等的实根;关于
的原三次方程
则有三个实根,且存在等根.

(1) 当

,关于
的二次方程
的等根为0,即
. 关于
的原三次方程
则有
三个等根

(2) 当

(即
)时
,关于
的二次方程
的等根为
.关于
的原三次方程
则有
三个实根,其中 两个等根

2、判别式

时,关于
的二次方程
有两个不等的实根;关于
的原三次方程
则有一个实根、两个共轭虚根.

此时从关于

的二次方程
易得:

  • 关于
    的原三次方程
    的唯一实根为

上式为Cardano公式的经典形式

  • 关于
    的原三次方程
    的共轭虚根为

3、判别式

时,关于
的二次方程
有两个共轭虚根;关于
的原三次方程
则有三个不等的实根.

此时

,从关于
的二次方程
易得两个共轭虚根:

将共轭虚根从代数形式转换成三角形式,即

则有

因此

  • 关于
    的原三次方程
    的三个实根为

四、三次方程的其他初等代数解法

范盛金[2]1989年提出盛金公式,引入三个重根判别式和一个总判别式,分四种情况进行分类讨论,其实与Cardano公式中

四种情况完全等效.盛金公式虽然旨在保留三次方程的一般形式,不用变形为
的特殊形式;但是因为引入较多的中间代数式及判别式,所以在实际使用中其实更加繁琐,实用性欠佳.

参考

  1. ^abc华罗庚(著)王元(校).高等数学引论(第一册)[M].北京:高等教育出版社,2009:40-44.【第一章 实数与复数:第15节 三、四次方程解法】(ISBN: 9787040258424) https://book.douban.com/subject/3515083/
  2. ^范盛金.一元三次方程的新求根公式与新判别法[J].海南师范学院学报(自然科学版),1989,2(2):91-98.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值