一、三次方程的变形[1]
关于
的三次方程的一般形式:
方程系数除以
,使得三次项
的系数为1,得:
令
来替代
,得:
令
,使得二次项
的系数为0,得三次方程的特殊形式:
此处有:
,
,
.
解出
即可得到
.
二、Cardano公式的一般形式[1]
令
,代入
得:
即
.
不妨做如下构造:
由韦达定理可知,
和
是关于
的二次方程
的两个实根:
,此处判别式
或者两个共轭虚根:
,此处判别式
关于
的原三次方程
则有三个根:
即为Cardano公式的一般形式.此处有
,
.
三、Cardano公式的分类讨论[1]
1、判别式
时,关于
的二次方程
有两个相等的实根;关于
的原三次方程
则有三个实根,且存在等根.
(1) 当
时
,关于
的二次方程
的等根为0,即
. 关于
的原三次方程
则有
三个等根:
(2) 当
且
)时
,关于
的二次方程
的等根为
.关于
的原三次方程
则有
三个实根,其中
两个等根:
2、判别式
时,关于
的二次方程
有两个不等的实根;关于
的原三次方程
则有一个实根、两个共轭虚根.
此时从关于
的二次方程
易得:
- 关于
的原三次方程的唯一实根为
上式为Cardano公式的经典形式.
- 关于
的原三次方程的共轭虚根为
3、判别式
时,关于
的二次方程
有两个共轭虚根;关于
的原三次方程
则有三个不等的实根.
此时
,从关于
的二次方程
易得两个共轭虚根:
将共轭虚根从代数形式转换成三角形式,即
则有
因此
,
- 关于
的原三次方程的三个实根为
四、三次方程的其他初等代数解法
范盛金[2]1989年提出盛金公式,引入三个重根判别式和一个总判别式,分四种情况进行分类讨论,其实与Cardano公式中
、
、
、
四种情况完全等效.盛金公式虽然旨在保留三次方程的一般形式,不用变形为
的特殊形式;但是因为引入较多的中间代数式及判别式,所以在实际使用中其实更加繁琐,实用性欠佳.
参考
- ^abc华罗庚(著)王元(校).高等数学引论(第一册)[M].北京:高等教育出版社,2009:40-44.【第一章 实数与复数:第15节 三、四次方程解法】(ISBN: 9787040258424) https://book.douban.com/subject/3515083/
- ^范盛金.一元三次方程的新求根公式与新判别法[J].海南师范学院学报(自然科学版),1989,2(2):91-98.