
一、三次方程的变形[1]
关于
方程系数除以
令
令
此处有:
解出
二、Cardano公式的一般形式[1]
令
即
不妨做如下构造:
由韦达定理可知,
的两个实根:
或者两个共轭虚根:
关于
即为Cardano公式的一般形式.此处有
三、Cardano公式的分类讨论[1]
1、判别式
(1) 当
(2) 当
2、判别式
此时从关于
- 关于
的原三次方程
的唯一实根为
上式为Cardano公式的经典形式.
- 关于
的原三次方程
的共轭虚根为
3、判别式
此时
将共轭虚根从代数形式转换成三角形式,即
则有
因此
- 关于
的原三次方程
的三个实根为
四、三次方程的其他初等代数解法
范盛金[2]1989年提出盛金公式,引入三个重根判别式和一个总判别式,分四种情况进行分类讨论,其实与Cardano公式中
参考
- ^abc华罗庚(著)王元(校).高等数学引论(第一册)[M].北京:高等教育出版社,2009:40-44.【第一章 实数与复数:第15节 三、四次方程解法】(ISBN: 9787040258424) https://book.douban.com/subject/3515083/
- ^范盛金.一元三次方程的新求根公式与新判别法[J].海南师范学院学报(自然科学版),1989,2(2):91-98.