gcn语义分割_图像语义分割(8)-Large Kernel Matters:通过全局卷积网络改进语义分割...

cae5ca7a0b3ff466bfce9fd37a30661c.png

论文地址 :Large Kernel Matters——Improve Semantic Segmentation by Global Convolutional Network

1. 问题提出

当前网络的设置倾向于使用小尺寸滤波器,在相同的计算代价下效果与大核的效果相同,但是后者在同时处理分类和定位任务时非常关键。
分类和定位任务“天生”矛盾,对于分类任务来说,其要求网络具有不变性,即在各种变化和旋转之后,类别仍然一致;对于定位任务则相反,要求其对变换敏感。

2. 解决方案

为了克服上面提到的问题,提出了遵循下面两个准则的Global Convolutional Network(GCN)

  • 对于分类任务:使用较大尺寸的核函数使得特征图和逐像素点分类器之间能够建立密集连接
  • 对于定位任务:使用全卷积,剔除全连接和全局池化
    具体地:
  • 为了使全局卷积便于执行,文中采用对称可分离的大滤波器来减少参数并降低计算代价;
  • 设计了边界精细模块集成到网络中,精细化物体边界,并能够端到端的训练;
    基于此,论文的主要贡献在于:
  • 提出全局卷积网络。减缓定位任务和分类任务的矛盾
  • 提出边界精细模块使得物体边界处的定位更加精细

3. 网络架构

3.1 GCN:Global Convolutional Network

对于分类任务,模型需要抽取图像深层的特征(小尺寸的特征图),空间维度上比较粗糙,但能够使分类器和特征图通过全连接层建立密集连接;而对于定位任务,模型需要尽可能大的特征图来编码空间信息。当前的语义分割模型都着重于后者,使得分类器可能难以捕获某些关键的特征从而影响分类,出现下面的问题:图像尺寸变大后感受区域不能覆盖整个物体:

aeeb639872da9ec61aca7ece43c303b9.png


下面介绍GCN模块,如下图所示:

dea65f33d53a835e7fe7f8fc68c9f84e.png


根据定位任务的要求采取全卷积的方式,根据分类任务密集连接的启发设计大尺寸的核函数,如果内核尺寸扩大到和特征图一致,则模型拥有了分类任务中密集连接的优点。
具体地,GCN并不直接使用更大的核函数或者是全局卷积,GCN将核大小为1 times k +k times1和k times 1 +k times11×k+k×1和k×1+k×1的卷积结合来建立特征图中一个较大的k times kk×k的区域和分类器的密集连接,与普通的k times kk×k卷积相比计算代价仅为O(frac{2}{k})O(k2​)。

3.2 模型整体框架

模型是哟个ResNet作为主干网络在不同阶段进行多尺度的特征提取,之后上采样至相同大小并add up,交由预测模块输出最终结果,整个流程如下图:

647a0ee13c3a135bd3019cc4f2b2023a.png

3.3 Boundary RefineMent Block

该模块设计为残差模块,具体如下图所示:

538edc3b61a6326071dc7980841a1e4d.png

4. 实验

4.1 烧蚀实验

烧蚀实验是为了确定每一个部分对实验结果的影响情况而设计的实验。

4.1.1 k的尺寸的影响

使用不同的k来训练模型,得到效果最好的一个,如下图所示:

726df1e5e1c5c8b63476ff73c6a9cc28.png


根据这个实验有以下几个问题:

  • 更多的参数是否能有助于效果改善?
    过多的参数会使模型过拟合,在实际训练中,普通的大尺寸核函数会使得收敛困难。

362568a2491853e5d7de2bd29deb51b9.png
  • *GCN和串行的小的卷积快

f848996d5a8ce0376c2f416fefb7f6b5.png
  • GCN如何提升分割的效果
    GCN利用大尺寸滤波器,与“纯”的分类近似般,使得分类器和特征图建立了密集连接提升了分割的效果,文章还预测对于较大的且多数像素集中在物体重心的物体分割效果会很好。

4.1.2 在GCN中使用不同的预训练模型

将GCN的思想用在ResNet上得到ResNet-GCN,如下图:

addadfed352070950e65b880bf518453.png

4.2 PASCAL VOC 2012

4.2.1 三个阶段

  • stage-1:混合COCO,SBD和VOC12的数据(输入图像尺寸640×640)
  • stage-2:混合SBD和VOC12(输入图像尺寸512×512)
  • stage-3:仅使用VOC12(输入图像尺寸512×512)

29dd7ca08cf27068ab0fae4024f1f242.png

4.2.2 VOC12 test

d3dd75f0420085958ac6d96e670e031f.png

4.3 Cityscapes

d3dd75f0420085958ac6d96e670e031f.png

欢迎关注 深度学习与数学 [每天获取免费的大数据、AI等相关的学习资源、经典和最新的深度学习相关的论文研读,算法和其他互联网技能的学习,概率论、线性代数等高等数学知识的回顾]

443fa869a985be6a4ebc1d7f7e47dcb7.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值