太离谱,某 211 软件工程招 1900 人...

太原理工

最近,太原理工录取 1871 名(计划招生 1900 名)软件工程学生,开 60 个班,引发了不少热议。

众所周知,这几年互联网行业并不好过,一方面是中概互联网开始逐步收缩战线,不少 HC 被取消,同时伴随着不少裁员;另一方面是这几年毕业生人数不断创新高,这一来一回导致了「供过于求」的局面越发严重。

太原理工这一届就招 1900 名的软件工程学生,一定程度会加剧四年后就业市场的白热化。

要知道一个专业,一般也就是 100~200 人左右,热门专业不会超过 500 人,这一下子 1900 人,步子实在迈得太大了。

虽然,太原理工是山西唯一的 211,唯二的双一流。

作为承担山西省 211 录取率重任的学校,提高软件工程的招生人数,一定程度可以说是为了满足想就读该专业的需求,为山西学生着想。

但不是所有人都提前问过张雪峰,也不是所有人都确定自己是否真的喜欢计算机的。

因此,太原理工直接招收 1900 名软件工程专业的学生,学费 1.6 万,且不能转专业。这样的做法并不妥当。

这是锁定了这些学生的未来,而且大概率是惨烈的未来。

市场好的时候,听得最多的词是"转码",市场不好的时候,0 Offer 分分钟让人后悔学计算机。

从太原理工这事来看,有"转码"或"就读计算机"想法的同学要谨慎了,永远记住「普通人、有好处、不排队」是个不可能三角。

...

回归主题。

来一道「最短路」的题目,顺便复习一下昨天的学的模板。

题目描述

平台:LeetCode

题号:882

给你一个无向图(原始图),图中有 n 个节点,编号从 0n - 1

你决定将图中的每条边细分为一条节点链,每条边之间的新节点数各不相同。

图用由边组成的二维数组 edges 表示,其中  表示原始图中节点 a 和 b 之间存在一条边,c 是将边细分后的新节点总数。

注意, 表示边不可细分。

要细分边 ,需要将其替换为 条新边,和  个新节点。新节点为 ,新边为 。

现在得到一个新的细分图,请你计算从节点 0 出发,可以到达多少个节点?如果节点间距离是 maxMoves 或更少,则视为可以到达。

给你原始图和 maxMoves,返回新的细分图中从节点 0 出发可到达的节点数。

示例 1:

输入:edges = [[0,1,10],[0,2,1],[1,2,2]], maxMoves = 6, n = 3

输出:13

解释:边的细分情况如上图所示。
可以到达的节点已经用黄色标注出来。

示例 2:

输入:edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], maxMoves = 10, n = 4

输出:23

示例 3:

输入:edges = [[1,2,4],[1,4,5],[1,3,1],[2,3,4],[3,4,5]], maxMoves = 17, n = 5

输出:1

解释:节点 0 与图的其余部分没有连通,所以只有节点 0 可以到达。

提示:

  • 图中不存在平行边

朴素 Dijkstra

为了方便,我们将原始图边的数量记为 m,因此对于原始图而言,点的数量 3000,边的数量为 10000。

题目要我们求新图上,从 0 点出发可到达的点的数量,我们将原图上存在的点称为「原点」,细分边上增加的点称为「细分点」,两类点中可达点的数量即是答案。

在分别考虑如何统计两类点之前,我们需要重新定义一下边的权重:「若原点 u 和原点 v 的边上存在 c 个细分点,我们将原点 u 和原点 v 之间的边看作是一条权重为 c + 1 的无向边(结合题意,c 个点存在 c + 1 个分段/距离)」

重新定义边的权重后,因为该图是「稠密图」,我们可以使用「朴素 Dijkstra」来求解最短路,得到 数组,其中 含义为从原点 0 点出发,到达原点 x 的最短距离为 t

「不了解最短路的同学可以看前置 🧀 : 涵盖所有的「存图方式」与「最短路算法(详尽注释)」

随后考虑如何统计答案(可达点的数量),根据统计点的类型分情况讨论:

  1. 对于原点:若有 的话,说明原点 x 可达,累加到答案中;

  2. 对于细分点:由于所有的细分点都在原图边上,因此我们可以统计所有原图边上有多少细分点可达。 对于任意一条边 而言,该边上可达点数量包含「经过原点 u 可达」以及「经过原点 v 可达」的并集,其中原点 0 到达原点 u 以及原点 v 的距离,我们是已知的。因此经过原点 u 可达的数量为 ,经过原点 v 可达的数量为 ,两者之和与该边上细分点的总数取 min 即是这条边可达点的数量。

代码:

class Solution {
    static int N = 3010, INF = 0x3f3f3f3f;
    static int[][] g = new int[N][N];
    static int[] dist = new int[N];
    static boolean[] vis = new boolean[N];
    public int reachableNodes(int[][] edges, int max, int n) {
        // 建图
        for (int i = 0; i < n; i++) Arrays.fill(g[i], INF);
        for (int[] info : edges) {
            int a = info[0], b = info[1], c = info[2] + 1;
            g[a][b] = g[b][a] = c;
        }
        // 朴素 Dijkstra
        Arrays.fill(dist, INF);
        Arrays.fill(vis, false);
        dist[0] = 0;
        for (int i = 0; i < n; i++) {
            int t = -1;
            for (int j = 0; j < n; j++) {
                if (!vis[j] && (t == -1 || dist[j] < dist[t])) t = j;
            }
            vis[t] = true;
            for (int j = 0; j < n; j++) dist[j] = Math.min(dist[j], dist[t] + g[t][j]);
        }
        // 统计答案
        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (dist[i] <= max) ans++;
        }
        for (int[] info : edges) {
            int a = info[0], b = info[1], c = info[2];
            int c1 = Math.max(0, max - dist[a]), c2 = Math.max(0, max - dist[b]);
            ans += Math.min(c, c1 + c2);
        }
        return ans;
    }
}
  • 时间复杂度:建图复杂度为 ;使用朴素 Dijkstra 求最短路复杂度为 ;统计答案复杂度为 。整体复杂度为
  • 空间复杂度:

SPFA

从数据范围来看,无论是朴素 Dijkstra 还是堆优化版的 Dijkstra 都可以过,复杂度分别为 和 。

那 Bellman Ford 类的单源最短路就无法通过了吗?

理论上,无论是 Bellman Ford 还是 SPFA 复杂度均为 ,均无法通过本题。但实际上 SPFA 由于使用队列对松弛顺序进行了调整,因此在应对「非菊花图」时均表现良好,复杂度可视为 ,近似 。

代码:

class Solution {
    static int N = 3010, M = 20010, INF = 0x3f3f3f3f, idx = 0;
    static int[] he = new int[N], e = new int[M], ne = new int[M], w = new int[M];
    static int[] dist = new int[N];
    static boolean[] vis = new boolean[N];
    void add(int a, int b, int c) {
        e[idx] = b;
        ne[idx] = he[a];
        w[idx] = c;
        he[a] = idx++;
    }
    public int reachableNodes(int[][] edges, int max, int n) {
        // 建图
        Arrays.fill(he, -1);
        idx = 0;
        for (int[] info : edges) {
            int a = info[0], b = info[1], c = info[2] + 1;
            add(a, b, c); add(b, a, c);
        }
        // SPFA
        Arrays.fill(dist, INF);
        Arrays.fill(vis, false);
        Deque<Integer> d = new ArrayDeque<>();
        d.addLast(0);
        dist[0] = 0;
        vis[0] = true;
        while (!d.isEmpty()) {
            int t = d.pollFirst();
            vis[t] = false;
            for (int i = he[t]; i != -1; i = ne[i]) {
                int j = e[i];
                if (dist[j] > dist[t] + w[i]) {
                    dist[j] = dist[t] + w[i];
                    if (vis[j]) continue;
                    d.addLast(j);
                    vis[j] = true;
                }
            }
        }
        // 统计答案
        int ans = 0;
        for (int i = 0; i < n; i++) {
            if (dist[i] <= max) ans++;
        }
        for (int[] info : edges) {
            int a = info[0], b = info[1], c = info[2];
            int c1 = Math.max(0, max - dist[a]), c2 = Math.max(0, max - dist[b]);
            ans += Math.min(c, c1 + c2);
        }
        return ans;
    }
}
  • 时间复杂度:建图复杂度为 ;使用 SPFA 求最短路复杂度为 ;统计答案复杂度为 。整体复杂度为
  • 空间复杂度:

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值