PDD
前天发了 PDD 各岗位薪资一览表,不少同学后台私信,表示 PDD 的工资方差很大,都是同一年校招进来,同组同事一样都是 985,都是一个级别的 offer,但对方工资更高。
甚至有同学,将此行为归类为「公司看学校开工资」:

好家伙,真把自己当纯白纸了。
不然是校招还是社招,不同人即使面试的是同一岗位,同一位面试官,也会因为表现不同,得到不同的评分,而最终 HR 面中的博弈表现,更是对 offer 的最终待遇影响很大。
因此同一级别的 offer(白菜/SP/SSP)有个 1k~3k 的差异,十分正常,在哪个公司都有可能。
秋招正如火如荼,想要在复盘的时候有更多收获,在面对那些失败的经历,要善于先从自己身上找问题(面试表现 or 谈判技巧),而别一味地将原因归结到一些短时间无法改变的条件上(学历 or 学校)。
...
回归主题。
来一道和「2025 届秋招」相关的算法题。
题目描述
平台:LeetCode
题号:503
给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。
数字 x
的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1
。
示例 1:
输入: [1,2,1]
输出: [2,-1,2]
解释: 第一个 1 的下一个更大的数是 2;
数字 2 找不到下一个更大的数;
第二个 1 的下一个最大的数需要循环搜索,结果也是 2。
提示:
单调栈
对于「找最近一个比当前值大/小」的问题,都可以使用单调栈来解决。
单调栈就是在栈的基础上维护一个栈内元素单调。
在理解单调栈之前,我们先回想一下「朴素解法」是如何解决这个问题的。
对于每个数而言,我们需要遍历其右边的数,直到找到比自身大的数,这是一个 的做法。
「之所以是 ,是因为每次找下一个最大值,我们是通过「主动」遍历来实现的。」
而如果使用的是单调栈的话,可以做到 的复杂度,我们「将当前还没得到答案的下标暂存于栈内,从而实现「被动」更新答案。」
也就是说,栈内存放的永远是还没更新答案的下标。
具体的做法是:
每次将当前遍历到的下标存入栈内,「将当前下标存入栈内前,检查一下当前值是否能够作为栈内位置的答案(即成为栈内位置的「下一个更大的元素」),如果可以,则将栈内下标弹出。」
如此一来,我们便实现了「被动」更新答案,同时由于我们的弹栈和出栈逻辑,决定了我们「整个过程中栈内元素单调」。
还有一些编码细节,由于我们要找每一个元素的下一个更大的值,因此我们需要对原数组遍历两次,对遍历下标进行取余转换。
以及因为栈内存放的是还没更新答案的下标,可能会有位置会一直留在栈内(最大值的位置),因此我们要在处理前预设答案为 -1。而从实现那些没有下一个更大元素(不出栈)的位置的答案是 -1。
Java 代码:
class Solution {
public int[] nextGreaterElements(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
Arrays.fill(ans, -1);
Deque<Integer> d = new ArrayDeque<>();
for (int i = 0; i < n * 2; i++) {
while (!d.isEmpty() && nums[i % n] > nums[d.peekLast()]) {
int u = d.pollLast();
ans[u] = nums[i % n];
}
d.addLast(i % n);
}
return ans;
}
}
C++ 代码:
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
int n = nums.size();
vector<int> ans(n, -1);
deque<int> d;
for (int i = 0; i < n * 2; i++) {
while (!d.empty() && nums[i % n] > nums[d.back()]) {
int u = d.back();
d.pop_back();
ans[u] = nums[i % n];
}
d.push_back(i % n);
}
return ans;
}
};
Python 代码:
class Solution:
def nextGreaterElements(self, nums: List[int]) -> List[int]:
n = len(nums)
ans = [-1] * n
d = deque()
for i in range(n * 2):
while d and nums[i % n] > nums[d[-1]]:
u = d.pop()
ans[u] = nums[i % n]
d.append(i % n)
return ans
-
时间复杂度: -
空间复杂度:
数组模拟栈
本题不需要用到这个技巧,但是还是介绍一下,可作为拓展。
我们可以使用静态数组来模拟栈,这样我们的代码将会更快一点:
Java 代码:
class Solution {
public int[] nextGreaterElements(int[] nums) {
int n = nums.length;
int[] ans = new int[n];
Arrays.fill(ans, -1);
// 使用数组模拟栈,hh 代表栈底,tt 代表栈顶
int[] d = new int[n * 2];
int hh = 0, tt = -1;
for (int i = 0; i < n * 2; i++) {
while (hh <= tt && nums[i % n] > nums[d[tt]]) {
int u = d[tt--];
ans[u] = nums[i % n];
}
d[++tt] = i % n;
}
return ans;
}
}
C++ 代码:
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
int n = nums.size();
vector<int> ans(n, -1);
vector<int> d(n * 2);
int hh = 0, tt = -1;
for (int i = 0; i < n * 2; i++) {
while (hh <= tt && nums[i % n] > nums[d[tt]]) {
int u = d[tt--];
ans[u] = nums[i % n];
}
d[++tt] = i % n;
}
return ans;
}
};
Python 代码:
class Solution:
def nextGreaterElements(self, nums: List[int]) -> List[int]:
n = len(nums)
ans = [-1] * n
d = [0] * (n * 2)
hh, tt = 0, -1
for i in range(n * 2):
while hh <= tt and nums[i % n] > nums[d[tt]]:
ans[d[tt]] = nums[i % n]
tt -= 1
tt += 1
d[tt] = i % n
return ans
-
时间复杂度: -
空间复杂度:
总结
要从逻辑上去理解为什么能用「单调栈」解决问题:
-
我们希望将 算法优化为 算法,因此需要将「主动」获取答案转换为「被动」更新 -
我们需要使用数据结构保持那些「尚未更新」的位置下标,由于题目要求的是找「下一个更大的元素」,因此使用栈来保存 -
「被动」更新答案的逻辑导致了我们栈内元素单调
最后
巨划算的 LeetCode 会员优惠通道目前仍可用 ~
使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。
我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻。
欢迎关注,明天见。
更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉