小米开奖了,这薪资看笑了。。

小米

最近小米的「软件开发」岗位开奖了,但遭受到了网友嘲讽,不少同学表示这薪资看笑了 🤣🤣🤣

alt

楼主是 985 硕士学历,拿到的是坐标武汉的小米软件开发岗位 offer。

薪资是

虽然不同候选人的 offer 有所不同,但同为校招的话,通常大差不差。

个人预估,坐标都是武汉的小米软开岗位,月 base 大概在 18k 上下不超过 2k 的范围进行浮动。

这爆料乍一看,15 个月是正常水平,但月 base 只有 18k,似乎不高,但其实如果结合坐标来看,其实还可以。

看一眼武汉其他公司给自家软件开发工程师开的薪资范围就知道了:

alt

我觉得拿到武汉小米软开 offer 的同学,需要纠结的反而是「这 15 个月到底能不能拿到手」。

对此,你怎么看?小米的开奖价在你预期范围内吗?

...

回归主线。

来一道和「小米校招」相关的算法原题。

题目描述

平台:LeetCode

题号:1482

给你一个整数数组 bloomDay,以及两个整数 mk

现需要制作 m 束花。制作花束时,需要使用花园中相邻的 k 朵花 。

花园中有 n 朵花,第 i 朵花会在 bloomDay[i] 时盛开,恰好可以用于一束花中。

请你返回从花园中摘 m 束花需要等待的最少的天数。如果不能摘到 m 束花则返回 -1

示例 1:

输入:bloomDay = [1,10,3,10,2], m = 3, k = 1

输出:3

解释:让我们一起观察这三天的花开过程,x 表示花开,而 _ 表示花还未开。
现在需要制作 3 束花,每束只需要 1 朵。
1 天后:[x, _, _, _, _]   // 只能制作 1 束花
2 天后:[x, _, _, _, x]   // 只能制作 2 束花
3 天后:[x, _, x, _, x]   // 可以制作 3 束花,答案为 3

示例 2:

输入:bloomDay = [1,10,3,10,2], m = 3, k = 2

输出:-1

解释:要制作 3 束花,每束需要 2 朵花,也就是一共需要 6 朵花。而花园中只有 5 朵花,无法满足制作要求,返回 -1 。

示例 3:

输入:bloomDay = [7,7,7,7,12,7,7], m = 2, k = 3

输出:12

解释:要制作 2 束花,每束需要 3 朵。
花园在 7 天后和 12 天后的情况如下:
7 天后:[x, x, x, x, _, x, x]
可以用前 3 朵盛开的花制作第一束花。但不能使用后 3 朵盛开的花,因为它们不相邻。
12 天后:[x, x, x, x, x, x, x]
显然,我们可以用不同的方式制作两束花。

示例 4:

输入:bloomDay = [1000000000,1000000000], m = 1, k = 1

输出:1000000000

解释:需要等 1000000000 天才能采到花来制作花束

示例 5:

输入:bloomDay = [1,10,2,9,3,8,4,7,5,6], m = 4, k = 2

输出:9

提示:

二分查找

题目需要求得「所需的最少天数」。

假设「所需的最少天数」为 ans ,那么以 ans 为分割点的数轴具有「二段性」:

  • 天数范围落在 无法制作完成
  • 天数范围在 可以制作完成

因此可以通过「二分」来找到分割点 ans

接下来我们需要确定「二分范围」,一个及格的「二分范围」只需要确保答案落在范围即可。

显然范围的左边界为 (代表尚未有花绽放),范围的右边界为 (最后一朵花的开放时间,代表所有花都开完)。

我们既可以通过遍历 数组来取得「精确右边界」,也可以直接根据数据范围 1 <= bloomDay[i] <= 10^9 来确定「粗略右边界」。

由于二分查找本身具有“折半”效率,因此两者不会有太大效率差距,我这里采用「粗略右边界」的方式。

Java 代码:

class Solution {
    int n, m, k;
    boolean[] fl;
    public int minDays(int[] nums, int _m, int _k) {
        n = nums.length;
        m = _m; k = _k;
        if (n < m * k) return -1;
        fl = new boolean[n];
        int l = 0, r = (int)1e9;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid)) r = mid;    
            else l = mid + 1;
        }
        return check(nums, r) ? r : -1;
    }
    boolean check(int[] nums, int mid) {
        for (int i = 0; i < n; i++) fl[i] = nums[i] <= mid;
        int cnt = 0;
        for (int i = 0; i < n && cnt < m; ) {
            if (fl[i]) {
                int cur = 1, j = i;
                while (cur < k && j + 1 < n && fl[j + 1]) {
                    j++; cur++;
                }
                if (cur == k) cnt++;
                i = j + 1;
            } else {
                i++;
            }
        }
        return cnt >= m;
    }
}

C++ 代码:

class Solution {
public:
    int n, m, k;
    vector<bool> fl;
    int minDays(vector<int>& nums, int _m, int _k) {
        n = nums.size();
        m = _m; k = _k;
        if (n < m * 1L * k ) return -1;
        fl.resize(n);
        int l = 0, r = 1e9;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid)) r = mid;
            else l = mid + 1;
        }
        return check(nums, l) ? l : -1;
    }
    bool check(const vector<int>& nums, int mid) {
        for (int i = 0; i < n; i++) fl[i] = nums[i] <= mid;
        int cnt = 0;
        for (int i = 0; i < n && cnt < m; ) {
            if (fl[i]) {
                int cur = 1, j = i;
                while (cur < k && j + 1 < n && fl[j + 1]) {
                    j++; cur++;
                }
                if (cur == k) cnt++;
                i = j + 1;
            } else {
                i++;
            }
        }
        return cnt >= m;
    }
};

Python 代码:

class Solution:
    def minDays(self, nums: List[int], m: int, k: int) -> int:
        n = len(nums)
        if n < m * k: return -1
        fl = [0] * n
        def check(mid):
            fl = [num <= mid for num in nums]
            cnt, i = 00
            while i < n and cnt < m:
                if fl[i]:
                    cur, j = 1, i
                    while cur < k and j + 1 < n and fl[j + 1]:
                        j, cur = j + 1, cur + 1
                    if cur == k:
                        cnt += 1
                    i = j + 1
                else:
                    i += 1
            return cnt >= m

        l, r = 010**9
        while l < r:
            mid = l + r >> 1
            if check(mid):
                r = mid
            else:
                l = mid + 1
        return check(l) and l or -1
  • 时间复杂度: check 函数的复杂度为 。整体复杂度为
  • 空间复杂度:

优化 check 函数

不难发现,上述 check 函数每次都先将所有已开的花预处理出来。复杂度是严格

其实这个过程也能下放到统计逻辑去做,这样能够让 check 函数的复杂度从严格 变为最坏情况 ,同时省去 数组,将空间优化至

Java 代码:

class Solution {
    int n, m, k;
    public int minDays(int[] nums, int _m, int _k) {
        n = nums.length;
        m = _m; k = _k;
        if (n < m * k) return -1;
        int l = 0, r = (int)1e9;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid)) r = mid;    
            else l = mid + 1;
        }
        return check(nums, r) ? r : -1;
    }
    boolean check(int[] nums, int mid) {
        int cnt = 0;
        for (int i = 0; i < n && cnt < m; ) {
            int cur = nums[i] <= mid ? 1 : 0, j = i;
            if (cur > 0) {
                while (cur < k && j + 1 < n && nums[j + 1] <= mid) {
                    j++; cur++;
                }
                if (cur == k) cnt++;
                i = j + 1;
            } else {
                i++;
            }
        }
        return cnt >= m;
    }
}

C++ 代码:

class Solution {
public:
    int n, m, k;
    int minDays(vector<int>& nums, int _m, int _k) {
        n = nums.size();
        m = _m; k = _k;
        if (n < m * 1L * k) return -1;
        int l = 0, r = 1e9;
        while (l < r) {
            int mid = l + r >> 1;
            if (check(nums, mid)) r = mid;
            else l = mid + 1;
        }
        return check(nums, l) ? l : -1;
    }
    bool check(const vector<int>& nums, int mid) {
        int cnt = 0;
        for (int i = 0; i < n && cnt < m; ) {
            int cur = nums[i] <= mid ? 1 : 0, j = i;
            if (cur > 0) {
                while (cur < k && j + 1 < n && nums[j + 1] <= mid) {
                    j++; cur++;
                }
                if (cur == k) cnt++;
                i = j + 1;
            } else {
                i++;
            }
        }
        return cnt >= m;
    }
};

Python 代码:

class Solution:
    def minDays(self, nums: List[int], m: int, k: int) -> int:
        n = len(nums)
        if n < m * k: return -1        
        def check(mid):
            cnt, i = 00
            while i < n and cnt < m:
                cur = 1 if nums[i] <= mid else 0
                j = i
                if cur > 0:
                    while cur < k and j + 1 < n and nums[j + 1] <= mid:
                        j, cur = j + 1, cur + 1
                    if cur == k:
                        cnt += 1
                    i = j + 1
                else:
                    i += 1
            return cnt >= m

        l, r = 010**9
        while l < r:
            mid = l + r >> 1
            if check(mid):
                r = mid
            else:
                l = mid + 1
        return check(l) and l or -1
  • 时间复杂度: check 函数的复杂度为 。整体复杂度为
  • 空间复杂度:

最后

巨划算的 LeetCode 会员优惠通道目前仍可用 ~

使用福利优惠通道 leetcode.cn/premium/?promoChannel=acoier,年度会员 有效期额外增加两个月,季度会员 有效期额外增加两周,更有超大额专属 🧧 和实物 🎁 福利每月发放。

我是宫水三叶,每天都会分享算法知识,并和大家聊聊近期的所见所闻

欢迎关注,明天见。

更多更全更热门的「笔试/面试」相关资料可访问排版精美的 合集新基地 🎉🎉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值