ireport 生成横向数据_浅谈横向联邦学习的梯度保护技术

本文探讨了横向联邦学习(Horizontal Federated Learning)的目标,尤其是如何在不暴露样本信息的情况下进行模型训练。文章指出,梯度传输可能导致数据泄露,如Deep Leakage from Gradients攻击,但谷歌提出的Secure Aggregation协议提供了解决方案,通过加密梯度更新和秘密分享策略来保护隐私。此外,文中还提到了面对两个恶意客户端时的挑战,并提及阿里巴巴安全研究专家的有关工作。
摘要由CSDN通过智能技术生成

429036b89434abdce4ef0d6620a3faeb.png

横向联邦学习(Horizontal Federated Learning)又称同构联邦学习(Homogenous Federated Learning)指的是参与各方拥有同样特征空间,而在样本空间上互不相同的联邦学习。

横向联邦学习要达到两个基本目标:

  1. 不交换样本也能利用全部样本进行模型的训练,训练效果与聚集全部样本后训练一致
  2. 训练过程交换的中间数据也不能暴露样本信息

关于目标1,其实很容易达到,早在96年FJ Provost等人就提出了Distributed Rule Learning(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.2129&rep=rep1&type=pdf),说明使用多台计算机并行处理不同的样本可以大大加速模型训练。到了2014年,李沐等人依据在百度的大规模机器学习实践提出了ParameterServer模式(http://papers.nips.cc/paper/5597-communication-efficient-distributed-machine-learning-with-the-parameter-server.pdf)又大大提升了分布式机器学习在集群架构和算法实现的泛用化程度。所以实现目标1并不是HFL的最大挑战,至少这一目标已经被工业界和学术界基本攻克。

难度在于目标2,漏洞就在于分布式机器学习引入的梯度传输,可能会导致反推回原始数据。最近比较火的一个报道是MIT的Han Song组在 NeurIPS 2019 发表的 Deep Leakage from Gradients(https://hanlab.mit.edu/projects/dlg/),其中报道了一个用20行基于PyTorch核心代码的样例,运用GAN的思想,让分布式训练中的一个攻击方可以从整个模型更新梯度的过程中,不断生成与其他参与各方相同的数据,从而实现『偷取』数据。 而国内自媒体也喜欢『见得风就是雨』,发表了一些诸如『联邦学习因为梯度泄露问题受影响』的观点(https://zhuanlan.zhihu.com/p/96945857)。

8952393a81bdfafe40636fe08995a595.png
DLG 的 示例程序

有这样的观点的同志,大概是不了解横向联邦学习要解决的基本问题本身就包含梯度泄露。早在2017年,谷歌的Bonawitz等发表了『Practical Secure Aggregation for Privacy-Preserving Machine Learning』这篇文章,详细阐述了针对梯度泄露攻击设计的Secure Aggregation协议

35805948d7ae1afa516b9fce12f4e0c2.png
Secure Aggregation 协议简要交互图

Secure Aggregation协议有几个有意思的特点:

  1. 通过选择部分用户的加密梯度更新,类似于异步参数更新策略,来防御clients中的攻击者。这个可以基本可以解决DLG的问题,而DLG基本上依赖于同步参数更新策略的强假设:需要获得被攻击方样本集合上梯度值的精确值,随机选择会大大降低DLG的性能。
  2. 基于Secret Sharing的思想,让Server只知道Aggregated Gradients,防止Server想做坏事

这篇文章的Related Work很值得一读,还提出了其他一些可能的解决方法。

相对于被国内炒作了一波的DLG,我个人觉得另外一个针对横向联邦学习的攻击想法挺有意思的,IJCAI 2019上阿里巴巴的安全研究专家洪澄提出过,如果横向联邦中只有两个client,而其中一个又是Adversary Party的话,防御起来就很困难。谷歌并没有给出这种极端情况下的解决方案。洪澄研究员的论文原文我找不到了,有链接的朋友可在评论里面贴一下。

能比这种情况更极端的情况,大概就是只有两个Client,而且都是Adversary Party吧(狗头保命)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值