基于MATLAB的平面刚架有限元分析,根据MATLAB的平面刚架静力分析.doc

1eb48e223562581e9f567914d9741b0e.gif根据MATLAB的平面刚架静力分析.doc

基于MATLAB的平面刚架静力分析为了进一步理解有限元方法计算的过程,本文根据矩阵位移法的基本原理应用MATLAB编制计算程序对以平面刚架结构进行了静力分析。本文还利用ANSYS大型商用有限元分析软件对矩阵位移法的计算结果进行校核,发现两者计算结果相当吻合,验证了计算结果的可靠性。一、 问题描述如图1所示的平面刚架,各杆件的材料及截面均相同,E=210GPa,截面为0.120.2m的实心矩形,现要求解荷载作用下刚架的位移和内力。图1二、矩阵位移法计算程序编制为编制程序方便考虑,本文计算中采用“先处理法”。具体的计算步骤如下。(1) 对结构进行离散化,对结点和单元进行编号,建立结构(整体)坐标系和单元(局部)坐标系,并对结点位移进行编号;(2) 对结点位移分量进行编码,形成单元定位向量;(3) 建立按结构整体编码顺序排列的结点位移列向量,计算固端力、等效结点荷载 及综合结点荷载列向量;(4) 计算个单元局部坐标系的刚度矩阵,通过坐标变换矩阵形成整体坐标系下的单元刚度矩阵 ;(5) 利用单元定位向量形成结构刚度矩阵;(6) 按式 求解未知结点位移;(7) 计算各单元的杆端力。根据上述步骤编制了平面刚架的分析程序。程序中单元刚度矩阵按下式计算。转换矩阵则按下式计算。计算程序框图如图2所示,具体的程序代码见附录1。图2 MATLAB矩阵分析法程序框图三、解题步骤取整体坐标系如图3所示,对结构进行离散化,对结点和单元进行编号如图4所示,局部坐标系用单元中箭头的方向表示,原始数据如下: 图3 图4刚架结点输入矩阵为,x=0 0;0 -5;1.63 -6.37;4 -5;4 -1;4 2;各单元定位向量为,locvec1=1 2 3 0 0 0;locvec2=1 2 3 4 5 6;locvec3=4 5 6 7 8 9;locvec4=7 8 9 10 11 12;locvec5=10 11 12 0 0 0;输入截面参数,E=2.1e11;%E=210GPaa=0.12; %矩形截面长0.12mb=0.2; %矩形截面宽0.2m输入整体坐标系下各单元结点荷载列阵,f(1,:)=zeros(1,6);f(2,:)=0 0 0 0 40e3 0;f(3,:)=zeros(1,6);f(4,:)=0 0 0 -50e3 0 0;f(5,:)=zeros(1,6);输入整体坐标系下单元1等效节点荷载q=10e3; %10kN/mfe=0.5*q*l(1),0,-q*l(1)2/12,0.5*q*l(1),0,q*l(1)2/12;由此计算得到平面刚架整体坐标系下的结点位移(m),d= 0.00350.0000-0.00040.0030-0.0005-0.00040.00270.00000.0016-0.00510.0000-0.0006各个单元的杆端力如表1所示,表1 各单元杆端力单元12345i端Fx(kN)-17917.04717917.0517917.0517917.05-32083Fy(kN)17507.3731-17507.422492.6322492.6322492.63Mz(kNm)1897.83076-1897.832092.833-26668.344999.85j端Fx(kN)-32082.953-17917-1791732082.9532082.95Fy(kN)-17507.373-22492.6-22492.6-22492.6-22492.6Mz(kNm)-37312.596-2092.8326668.34-44999.851249.01四、计算结果校核在ANSYS中使用beam3单元,按照如图4所示的离散结构建立平面刚架模型施加约束和荷载,得到的有限元模型如图5所示。计算分析后得到结构的轴力图、剪力图和弯矩图如图6、7、8所示,命令流见附录2。图5 有限元模型图6 轴力图(kN)图7 剪力图(kN)图8 弯矩图(kNm)从ANSYS计算结果中提取各结点位移、内力,并与矩阵位移法分析的结果比较,得到表2、3。表2 各节点位移比较节点号项目矩阵位移法ANSYS误差1Ux(m)000Uy(m)000Rotz(rad)0002Ux(m)0.0034780.00348-2E-06Uy(m)0.00001740.00001740Rotz(rad)-0.00037-0.000365-5E-063Ux(m)0.0030180.00302-2E-06Uy(m)-0.00051-0.0005122E-06Rotz(rad)-0.00038-0.000378-2E-064Ux(m)0.0026870.00269-3E-06Uy(m)0.00003120.00003120Rotz(rad)0.0016240.001624E-065Ux(m)-0.00513-0.0051451.5E-05Uy(m)0.00001340.00001340Rotz(rad)-0.00056-0.000557-3E-066Ux(m)000Uy(m)000Rotz(rad)000表3 各结点内力比较节点号项目矩阵位移法ANSYS误差1Fx(kN)-32.083-32.080-0.003Fy(kN)-17.507-17.503-0.004Mz(kNm)-37.313-37.307-0.0062Fx(kN)-17.917-17.9200.003Fy(kN)17.50717.5030.004Mz(kNm)1.8981.909-0.0113Fx(kN)-17.917-17.9200.003Fy(kN)-22.493-22.4970.004Mz(kNm)-2.093-2.1100.0184Fx(kN)-17.917-17.9200.003Fy(kN)-22.493-22.4970.004Mz(kNm)26.66826.682-0.0145Fx(kN)-32.083-32.080-0.003Fy(kN)-22.493-22.4970.004Mz(kNm)-45.000-44.999-0.0016Fx(kN)32.08332.0800.003Fy(kN)-22.493-22.4970.004Mz(kNm)51.24951.2390.010由表2、表3的结果对比可知,两种方法的计算结果十分接近,误差均可以忽略不计,从而验证了计算结果的可靠性与准确性。四、结论通过对一个平面刚架静力分析问题的求解,本文编制的平面刚架静力分析程序计算结果与有限元软件ANSYS计算结果校核后,发现两者计算结果十分接近,误差可忽略不计,说明该程序计算结果的可靠性与精确性。附录1 矩阵位移法计算程序pmgj.m 计算主程序clear clc%结点坐标x=0 0;0 -5;1.63 -6.37;4 -5;4 -1;4 2;% x1=0;y1=0;% x2=0;y2=-5;% x3=1.63;y3=-6.37;% x4=4;y4=-5;% x5=4;y5=-1;% x6=4;y6=2;%单元定位向量locvec1=1 2 3 0 0 0;locvec2=1 2 3 4 5 6;locvec3=4 5 6 7 8 9;locvec4=7 8 9 10 11 12;locvec5=10 11 12 0 0 0;%刚架的材料特性 截面特性E=2.1e11;%E=210GPaa=0.12; %矩形截面长0.12mb=0.2; %矩形截面宽0.2mA=a*b;I=(a*b3)/12;clear a b% 单元长度计算for i=1:5dx=x(i,1)-x(i+1,1);dy=x(i,2)-x(i+1,2);l(i)=(dx2+dy2)0.5;end%生成转换矩阵t1=coortrans(x(2,1),x(2,2),x(1,1),x(1,2);t2=coortrans(x(2,1),x(2,2),x(3,1),x(3,2);t3=coortrans(x(3,1),x(3,2),x(4,1),x(4,2);t4=coortrans(x(4,1),x(4,2),x(5,1),x(5,2);t5=coortrans(x(5,1),x(5,2),x(6,1),x(6,2);%结点荷载(结构坐标系下)f(1,:)=zeros(1,6);f(2,:)=0 0 0 0 40e3 0;f(3,:)=zeros(1,6);f(4,:)=0 0 0 -50e3 0 0;f(5,:)=zeros(1,6);%单元等效节点荷载(结构坐标系下)q=10e3; %10kN/mfe=0.5*q*l(1),0,-q*l(1)2/12,0.5*q*l(1),0,q*l(1)2/12;%单元坐标系下的值fe1=0,0.5*q*l(1),q*l(1)2/12,0,0.5*q*l(1),-q*l(1)2/12;%生成单元刚度矩阵(单元坐标系)k1=elemstiffm(E,A,l(1),I);k2=elemstiffm(E,A,l(2),I);k3=elemstiffm(E,A,l(3),I);k4=elemstiffm(E,A,l(4),I);k5=elemstiffm(E,A,l(5),I);%将单元坐标系下的单元刚度矩阵转换到结构坐标系下K1=t1*k1*t1;K2=t2*k2*t2;K3=t3*k3*t3;K4=t4*k4*t4;K5=t5*k5*t5;%组装总体刚度矩阵K=zeros(12);F=zeros(12,1);NonLog=(locvec1=0);ij=find(NonLog);IJ=locvec1(NonLog);K(IJ,IJ)=K(IJ,IJ)+K1(ij,ij);F(IJ)=F(IJ)+f(1,ij)+fe(ij);clear NonLog ij IJNonLog=(locvec2=0);ij=find(NonLog);IJ=locvec2(NonLog);K(IJ,IJ)=K(IJ,IJ)+K2(ij,ij);F(IJ)=F(IJ)+f(2,ij);clear NonLog ij IJNonLog=(locvec3=0);ij=find(NonLog);IJ=locvec3(NonLog);K(IJ,IJ)=K(IJ,IJ)+K3(ij,ij);F(IJ)=F(IJ)+f(3,ij);clear NonLog ij IJNonLog=(locvec4=0);ij=find(NonLog);IJ=locvec4(NonLog);K(IJ,IJ)=K(IJ,IJ)+K4(ij,ij);F(IJ)=F(IJ)+f(4,ij);clear NonLog ij IJNonLog=(locvec5=0);ij=find(NonLog);IJ=locvec5(NonLog);K(IJ,IJ)=K(IJ,IJ)+K5(ij,ij);F(IJ)=F(IJ)+f(5,ij);clear NonLog ij IJ%节点位移d=KF;%单元1杆端力(结构坐标系下)d1=zeros(6,1);NonLog=(locvec1=0);ij=find(NonLog);ij1=find(NonLog);IJ=locvec1(NonLog);d1=d(IJ);d1(ij1)=0;F1=K1*d1-fe;%单元2杆端力(结构坐标系下)d2=zeros(6,1);NonLog=(locvec2=0);ij=find(NonLog);ij1=find(NonLog);IJ=locvec2(NonLog);d2=d(IJ);d2(ij1)=0;F2=K2*d2-f(2,:);%单元3杆端力(结构坐标系下)d3=zeros(6,1);NonLog=(locvec3=0);ij=find(NonLog);ij1=find(NonLog);IJ=locvec3(NonLog);d3=d(IJ);d3(ij1)=0;F3=K3*d3-f(3,:);%单元4杆端力(结构坐标系下)d4=zeros(6,1);NonLog=(locvec4=0);ij=find(NonLog);ij1=find(NonLog);IJ=locvec4(NonLog);d4=d(IJ);d4(ij1)=0;F4=K4*d4-f(4,:);%单元5杆端力(结构坐标系下)d5=zeros(6,1);NonLog=(locvec5=0);ij=find(NonLog);ij1=find(NonLog);IJ=locvec5(NonLog);d5=d(IJ);d5(ij1)=0;F5=K5*d5-f(5,:);coortrans.m 转换矩阵生成函数% 转换矩阵生成函数(单元坐标系-结构坐标系)%y=coortrans(x1,y1,x2,y2),x1,y1,x2,y2为单元两端结点在结构坐标系下的坐标,单位都为mfunction y=coortrans(x1,y1,x2,y2)a=atan(y2-y1)/(x2-x1);c=cos(a);s=sin(a);t=zeros(6);t(1,1)=c;t(1,2)=s;t(2,1)=-s;t(2,2)=c;t(3,3)=1;t(4,4)=c;t(4,5)=s;t(5,4)=-s;t(5,5)=c;t(6,6)=1;y=t;endelemstiffm.m 单元刚度矩阵生成函数% 单元刚度矩阵生成函数% y=elemstiffm(E,A,l,I),E,A,l,I均采用国际单位制 Pa m2 m m4function y=elemstiffm(E,A,l,I)i1=E*A/l;i2=12*E*I/(l3);i3=6*E*I/(l2);i4=4*E*I/l;i5=2*E*I/l;k=zeros(6);k(1,1)=i1;k(1,4)=-i1;k(2,2)=i2;k(2,3)=i3;k(2,5)=-i2;k(2,6)=i3;k(3,3)=i4;k(3,5)=-i3;k(3,6)=i5;k(4,4)=i1;k(5,5)=i2;k(5,6)=-i3;k(6,6)=i4;k(3,2)=k(2,3);k(4,1)=k(1,4);k(5,2)=k(2,5);k(5,3)=k(3,5);k(6,2)=k(2,6);k(6,3)=k(3,6);k(6,5)=k(5,6);y=k;end附录2 ANSYS建模计算命令流finish/clear/prep7B=0.120$H=0.200$E=210000000et,1,beam3mp,ex,1,Emp,prxy,1,0.3r,1,B*H,B*H*H*H/12,Hk,1k,2,0,5k,3,1.6304,6.3681k,4,4,5k,5,4,1k,6,4,-2*set,i*do,i,1,5l,i,i+1*enddolesize,all,0.5latt,1,1,1lmesh,alldk,1,alldk,6,allfk,3,fy,-40fk,5,fx,-50lsel,s,1esll,ssfbeam,all,1,pres,10allsel,alldtranftransftran/pbc,all,2/psf,pres,norm,2,0,1eplot/solusolve/post1/pbc,u,1 !显示支座约束符号,并图形显示变形pldisp,1 !将当前主要结果列表显示presol,elem!/pnum,sval,1etable,mi,smisc,6etable,mj,smisc,12plls,mi,mj,-1 !弯矩图 kN.metable,qi,smisc,2etable,qj,smisc,8 plls,qi,qj,-1 !剪力图 kNetable,ni,smisc,1etable,nj,smisc,7plls,ni,nj,1 !轴力图 kN

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这句话可能出现了乱码,但就我所理解,问题是关于Matlab平面切割元素分析的。Matlab是一种计算机编程软件,可以用来进行各种数学和科学计算。平面切割是一种在二维空间内分析物体性质的方法,而有限元分析是一种将物体分成较小子部分进行分析的技术。因此,在Matlab中进行平面切割有限元分析,可以对物体的性质和行为进行更加准确的研究。 ### 回答2: 平面刚架有限元分析是一种经典的结构力学分析方法,常用于对各种工程结构的强度、稳定性、振动特性等进行评估和设计。基于matlab平面刚架有限元分析是通过matlab软件实现平面刚架模型的构建、载荷施加和计算分析等步骤,实现结构分析的数字化与可视化。下面,本文将从平面刚架有限元分析的相关理论基础、matlab平台的特点及其优缺点、matlab平面刚架有限元分析的基本流程及其实例分析等方面介绍该分析方法。 平面刚架有限元分析所依据的理论基础是结构力学基础,主要包括静力学、动力学、稳定性理论等。在matlab平台中,多数结构力学软件包和工具箱都支持平面刚架有限元分析,例如matlab自身的PDEtool工具箱和FEMtool工具包、ABAQUS、ANSYS等。其中,matlab工具箱的使用简便而且覆盖广泛,能够满足大部分分析需求。 matlab平台的主要优点是简易的流程编程,可视化编程界面,便于快速上手;同时它还有诸多的可爱特性,例如矩阵运算、图形绘制、各种可视化工具等。但它也有一些缺点,例如计算精度较低、运算速度较慢、不便于进行复杂模拟等。因此,在使用中应做好平衡和权衡。 matlab平面刚架有限元分析的基本流程分为模型预处理、分析求解和结果后处理。其中,模型预处理包括定义载荷、支座、材料参数等,同时将结构网格化并进行边界条件设定;分析求解阶段主要是进行矩阵的组装、求解和输出;结果后处理则通过绘制图表、产生动态图像、输出计算报告等方式来进行结果的可视化和分析。 以下是一个实例分析的基本流程:假设已知一钢结构平板,需要分析其的应力和变形等。首先,按照分析流程进行模型预处理,包括载荷的定义、结构网格化、边界条件的设定、材料特性参数的设置等。其次,进行分析求解,根据有限单元法的数学模型将问题转化为对求解一组未知系数的线性方程组,其中矩阵的构成方法和求解方式是平面刚架有限元法中的关键。最后,对结果进行后处理,绘制应力云图、变形等图表,并进行分析和报告。 综上所述,基于matlab平面刚架有限元分析,是一种简便易行、可视性高的分析方法,尽管它也有一些不足之处,但在很多工程行业中都得到了广泛的应用。 ### 回答3: 平面刚架是一种广泛应用于工程结构中的两维性杆件组成的系统,它能够承受较大的外载荷和内力,并保证结构的稳定性。 在工程应用中,为了预测平面刚架的应力、应变、形变等变量,通常会采用有限元分析的方法。有限元法是一种基于数值计算的方法,它将结构划分成大量的小单元,每个小单元内的变量可以近似表示整个结构的变化情况,从而得到结构的力学性能指标。 MATLAB是一种广泛使用的科学计算软件,它提供了丰富的数学分析和绘图工具,尤其适合进行有限元分析。具体的实现方法如下: 1. 确定模型和边界条件:首先,需要确定平面刚架的几何形状、材料参数、外界载荷等,同时为每一个节点和单元设置边界条件。 2. 划分单元:将平面刚架划分成小单元,每个单元内的变量可以近似表示整个结构的变化情况。MATLAB中提供了各种有限元划分算法以及模板,可以根据需要进行选择和修改。 3. 建立模型:根据单元划分和边界条件,建立平面刚架有限元分析模型。这个模型通常采用线性或非线性材料的本构关系。 4. 求解问题:使用有限元分析求解器对模型进行数值求解。MATLAB中提供了多种求解器,例如静态和动态求解器、热传递求解器、流体力学求解器等。 5. 结果评估和可视化:根据求解结果,可以进行有限元分析的结果评估和可视化。MATLAB中提供了各种绘图和可视化工具,例如边界值问题、模型分析、变形云图等,可以帮助工程师更好地理解分析结果。 总之,基于MATLAB平面刚架有限元分析是一种高效、精确的分析方法,它可以为工程师提供力学性能指标、优化设计方案、增强结构稳定性等方面的帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值