本文内容以圆为背景求线段长度。与2018年广东省的中考数学压轴题类似。大家可以对比一下。
【中考真题】
(2020·自贡)如图,⊙O是△ABC的外接圆,AB为直径,点P为⊙O外一点,且PA=PCAB,连接PO交AC于点D,延长PO交⊙O于点F.
(1)证明:;
(2)若tan∠ABC=2,证明:PA是⊙O的切线;
(3)在(2)条件下,连接PB交⊙O于点E,连接DE,若BC=2,求DE的长.
【分析】
题(1)中证明两条弧相等,说明它们被直径平分,那么可以考虑垂径定理的推论进行证明也就是得到OD⊥AC即可。那怎么证明它们垂直呢?条件已知PA=PC,所以可以考虑连接OC得到OC=OA,那么就可以根据垂直平分线的判定进行证明。
题(2)证明PA是切线,只需证明∠BAP=90°即可。已知tan∠ABC的值,那么可以设最短的BC=x,就可以表示出AB、AP、AD的值,然后得到△DAP∽△CBA,即可得到∠DAP=∠ABC,再得到∠BAP=90°即可。
题(3)需要求DE的长度,我们考虑的是利用勾股、相似等知识进行求解。但是没有相关的直角或相似。所以需要构造辅助线。由于AB是直径,可以连接AE,那么就可以得到AE是△ABP斜边上的高。由于BC长度已知,那么△ABP中的所有边长都可以表示出来,也知道BE:EP=1:2,那么就有很多方法可以求了。
连接BF,可以证明一个A字形的相似,求出BF的长度即可。
如上图,当然也可以构造蝴蝶型相似,求出BG、DG的长度即可得到DE的长度。
本题的图形与2018年的广东省中考数学压轴题类似。
一题十二解
【答案】(1)证明:连接OC.
∵PC=PA,OC=OA,
∴OP垂直平分线段AC,
∴.
(2)证明:设BC=a,
∵AB是直径,
∴∠ACB=90°,
∵tan∠ABC2,
∴AC=2a,AB3a,
∴OC=OA=OB,CD=ADa,
∵PA=PCAB,
∴PA=PC=3a,
∵∠PDC=90°,
∴PD4a,
∵DC=DA,AO=OB,
∴ODBCa,
∴AD2=PD•OD,
∴,
∵∠ADP=∠ADO=90°,
∴△ADP∽△ODA,
∴∠PAD=∠DOA,
∵∠DOA+∠DAO=90°,
∴∠PAD+∠DAO=90°,
∴∠PAO=90°,
∴OA⊥PA,
∴PA是⊙O的切线.
(3)解:如图,过点E作EJ⊥PF于J,BK⊥PF于K.
∵BC=2,
由(1)可知,PA=6,AB=6,
∵∠PAB=90°,
∴PB6,
∵PA2=PE•PB,
∴PE4,
∵∠CDK=∠BKD=∠BCD=90°,
∴四边形CDKB是矩形,
∴CD=BK=2,BC=DK=2,
∵PD=8,
∴PK=10,
∵EJ∥BK,
∴,
∴,
∴EJ,PJ,
∴DJ=PD﹣PJ=8,
∴DE.
京东商城
https://item.jd.com/12783241.html
当当网
http://product.dangdang.com/29176976.html
天猫商城
https://detail.tmall.com/item.htm?spm=a211lz.success.0.0.2ca42b90utqwAG&id=636222759859
点击阅读原文,也可以进入哦!