java定义重量的修饰词_java – 针对重量而不是值优化的背包算法

本文探讨了如何修改1-0Knapsack算法以优化背包内物品的总重量,并将价值作为次优选择,同时保持相同的算法复杂度。提出了一种解决方案,即通过调整物品的价值来确保算法首先最大化总重量,其次才是总价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是否有可能修改1-0 Knapsack算法以优化袋中物品的最终总重量作为首选(并将值作为第二选择),保持相同的算法复杂度?

更具体地说,我正在考虑改变这段代码

if (wt[item-1]<=weight){

V[item][weight]=Math.max (val[item-1]+V[item-1][weight-wt[item-1]], V[item-1][weight]);

}else{

V[item][weight]=V[item-1][weight];

}

在某些其他条件下,首先控制重量是否接近添加此项目的阈值,如果重量没有变化,则表示该值是否更好.

你有没有想过如何在不改变复杂性的情况下做到这一点?

谢谢

编辑

“首先控制重量是否接近添加此项目的阈值”我的意思是达到背包的重量限制.换句话说,“最大化我可以随身携带的重量”而不会破坏它

解决方法:

你想做以下事吗?选择项目以使重量最大化,同时仍然遵守重量限制.如果有多个最优解决方案,每个解决方案都达到最大可能的权重,那么通过选择总价值最大的解决方案来选择它们.

如果是这样,那么我建议如下. (我正在考虑背包问题本身,而不是你的Java实现.)

设M =所有项目中的[编辑]的最大值,N =项目数.用权重值/ MN替换每个值(在目标函数中).

然后模型将最大化总重量,同时仍然尊重重量限制.如果有多个具有相同最佳权重的解决方案,它将选择具有最大值的解决方案.通过MN划分确保您永远不会选择具有更好价值的解决方案,而代价是更重的重量.

标签:knapsack-problem,java,algorithm,optimization

来源: https://codeday.me/bug/20190823/1695426.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值