概率密度变换公式 雅可比矩阵_学习笔记之——Jacobian matrix(雅可比矩阵)

本文介绍了雅可比矩阵在机器人学中的重要性,并详细阐述了其定义、坐标变换、在运动学中的应用以及在力和力矩中的作用。通过雅可比矩阵,可以理解关节变化如何影响末端执行器的速度和力矩,以及在正运动学和逆运动学中的计算。
摘要由CSDN通过智能技术生成

在《斯坦福大学公开课——机器人学》视频课程中一开始就提到了Jacobian matrix的重要性。为此写下本学习笔记介绍雅可比矩阵。本博客的内容来自于网络的各种资料的总结,已经给出参考引用。本文仅作本人学习记录用。

目录

定义

机器人关节(Joint)之间的坐标变换(Transform)

Jacobian Matrix 在运动学中的意义

Jacobian Matrix 在正运动学中的应用

Jacobian Transpose 在力和力矩中的应用

参考资料

定义

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

在向量分析中,雅可比矩阵是函数的一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。

在代数几何中,代数曲线的雅可比行列式表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。

假设某函数从

映到

, 其雅可比矩阵是从

的线性映射,其重要意义在于它表现了一个多变数向量函数的最佳线性逼近。因此,雅可比矩阵类似于单变数函数的导数。

假设

是一个从n维欧氏空间映射到到m维欧氏空间的函数。这个函数由m个实函数组成:

。这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这个矩阵就是所谓的雅可比矩阵:

此矩阵用符号表示为:

,或者

这个矩阵的第 i行是由梯度函数的转置表示的如果p是

中的一点,F在 p点可微分,根据高等微积分,

是在这点的导数。在此情况下,

这个线性映射即F在点p附近的最优线性逼近,也就是说当x足够靠近点p时,有

总结一下,雅可比矩阵可以理解为:

若在n维欧式空间中的一个向量映射成m维欧式空间中的另一个向量的对应法则为F,F由m个实函数组成,即:

那么雅可比矩阵是一个m×n矩阵:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值