matlab求解雅可比矩阵_雅可比矩阵(多元非线性函数的线性化)

雅可比矩阵是一阶偏导数组成的矩阵,用于描述多元函数的线性逼近。在Matlab中,可以通过计算偏导数来构建雅可比矩阵,这对于理解和处理非线性函数至关重要。该矩阵在多元泰勒展开式中起到关键作用,提供了一种在局部区域对函数进行线性化的手段。
摘要由CSDN通过智能技术生成

87616463dfad047051c66b7d027ec410.png

卡尔·雅可比(Carl Gustav Jacob Jacobi,1804~1851),德国数学家。1804年12月10日生于普鲁士的波茨坦;1851年2月18日卒于柏林。雅可比是数学史上最勤奋的学者之一,与欧拉一样也是一位在数学上多产的数学家,是被广泛承认的历史上最伟大的数学家之一。雅可比善于处理各种繁复的代数问题,在纯粹数学和应用数学上都有非凡的贡献,他所理解的数学有一种强烈的柏拉图式的格调,其数学成就对后人影响颇为深远。在他逝世后,狄利克雷称他为拉格朗日以来德国科学院成员中最卓越的数学家。

在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。

假设

3dd78c03-c62c-eb11-8da9-e4434bdf6706.svg

是一个从n维欧氏空间映射到到m维欧氏空间的函数。这个函数由m个实函数组成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值