smo算法matlab实现,SVM之序列最小最优化算法(SMO算法)

本文介绍了SVM中的序列最小最优化算法(SMO)。SMO通过选择两个拉格朗日乘子,固定其他乘子,然后求解子问题以优化目标函数。文章详细阐述了SMO的优化问题、KKT条件、算法流程,并给出了MATLAB代码实现的简化版,适用于线性可分和不可分数据的SVM训练。
摘要由CSDN通过智能技术生成

SVM回顾

SVM_Example_of_Hyperplanes.png

支持向量机(SVM)的一大特点是最大化间距(max margin)。对于如上图的二分类问题,虽然有很多线可以将左右两部分分开,但是只有中间的红线效果是最好的,因为它的可活动范围(margin)是最大的,从直观上来说很好理解。

对于线性二分类问题,假设分类面为

$$\begin{equation} u=\vec w \cdot \vec x-b \end{equation}$$

则margin为

$$\begin{equation} m=\frac{1}{||w||_2} \end{equation}$$

根据max margin规则和约束条件,得到如下优化问题,我们要求的就是参数$\vec w$和$b$:

$$\begin{equation} \min\limits_{\vec w,b}\frac{1}{2}||\vec w||^2 \quad\text{subject to}\quad y_i(\vec w\cdot \vec x_i-b) \geq 1, \forall i,\end{equation}$$

对于正样本,类标号$y_i$为+1,反之则为-1。根据拉格朗日对偶,(3)可以转换为如下的二次规划(QP)问题,其中$\alpha_i$为拉格朗日乘子。

$$\begin{equation} \min\limits_{\vec \alpha}\Psi(\vec\alpha)=\min\limits_{\vec \alpha}\frac{1}{2}\sum_{i=1}^N\sum_{j=1}^Ny_iy_j(\vec x_i\cdot\vec x_j)\alpha_i\alpha_j-\sum_{i=1}^N\alpha_i,\end{equation}$$

其中N为样本数量。上式还需满足如下两个约束条件:

$$\begin{equation} \alpha_i\geq 0, \forall i,\end{equation}$$

$$\begin{equation} \sum_{i=1}^Ny_i\alpha_i=0.\end{equation}$$

一旦求解出所有的拉格朗日乘子,则我们可以通过如下的公式得到分类面参数$\vec w$和$b$。

$$\begin{equation}\vec w=\sum_{i=1}^Ny_i\alpha_i\vec x_i,\quad b=\vec w\cdot\vec x_k-y_k\quad\text{for some}\quad\alpha_k>0.\end{equation}$$

当然并不是所有的数据都可以完美的线性划分,可能有少量数据就是混在对方阵营,这时可以通过引入松弛变量$\xi_i$得到软间隔形式的SVM:

$$\begin{equation} \min\limits_{\vec w,b,\vec\xi}\frac{1}{2}||\vec w||^2+C\sum_{i=1}^N\xi_i \quad\text{subject to}\quad y_i(\vec w\cdot \vec x_i-b) \geq 1-\xi_i, \forall i,\end{equation}$$

其中的$\xi_i$为松弛变量,能假装把错的样本分对,$C$对max margin和margin failures的trades off。对于这个新的优化问题,约束变成了一个box constraint:

$$\begin{equation}0\leq\alpha_i \leq C,\forall i.\end{equation}$$

而松弛变量$\xi_i$不再出现在对偶公式中了。

对于线性不可分的数据,可以用核函数$K$将其投影到高维空间,这样就可分了,由此得到一般的分类面公式:

$$\begin{equation}u=\sum_{j=1}^Ny_j\alpha_jK(\vec x_j,\vec x)-b,\end{equation}$$

终极优化问题就变成了下面这个样子:

$$\begin{equation} \min\limits_{\vec \alpha}\Psi(\vec\alpha)=\min\limits_{\vec \alpha

  • 3
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值