matlab aicbic 函数,模型选择——AIC&BIC(matlab)

本文介绍了在MATLAB中如何利用AIC和BIC准则进行模型选择,特别是在建立ARMA和GARCH模型时。AIC和BIC用于避免过拟合,分别衡量模型复杂度和拟合度。MATLAB实现中,通过循环遍历不同p和q值,计算AIC和BIC,最终选择最小BIC对应的模型参数。
摘要由CSDN通过智能技术生成

在建立ARMA和GARCH模型的时候,我们常常需要涉及到模型阶数(如GARCH(p,q)中p和q)的选择问题,在这里我们使用AIC和BIC两个计算参数进行判断:

什么是AIC和BIC?

两者定义来源于信息准则:研究者通过加入模型复杂度的惩罚项来避免过拟合问题,随后推出了两个优选模型的准则:赤池信息准则(Akaike Information Criterion,AIC)和贝叶斯信息准则(Bayesian Information Criterion,BIC)。

AIC(赤池弘次,1974)的定义为:

AIC = 2*N - Ln(L)    * 这里N表示  模型参数个数的个数,L表示模型得出的  似然函数最优值

所以根据AIC的定义可知,当模型越复杂或者似然函数越小,AIC值越大。而我们的目标一般是选择AIC较小的模型(即希望模型简单,并且模型的拟合度高,其中对参数N的要求表示了我们不希望模型出现过拟合的情况)。

BIC(Schwarz,1978)的定义为:

BIC = N*Ln(n) - Ln(L)    * 这里N表示 模型参数个数的个数,L表示模型得出的  似然函数 最优值, n是模型中的  观测值数量  。

从AIC模型中我们可以看到没有考虑观测值数量,从统计学知识中我们可以知道随着观测值数量的增加,误差也可能随之上升,所以BIC中引入了观测值数量对模型进行判断。同AIC,BIC也是越小越好。

如何通过matlab实现AIC和BIC的判断?

1 P = 3; Q = 3; LOGL = zeros(P,Q); PQ = zeros(P,Q); n &#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值