对数似然值 matlab,matlab aic准则 怎么计算对数似然值

这段内容介绍了BIC(贝叶斯信息准则)和AIC(赤池信息准则)在模型选择中的作用,特别是在估计条件均值和方差的模型中。这两个准则用于惩罚含有更多参数的模型,优选那些最小化准则的模型。示例展示了如何使用这些准则来评估GARCH模型的性能。
摘要由CSDN通过智能技术生成

匿名用户

1级

2016-11-22 回答

BIC需要三个 inputs (LLF , numParams , numObs)

*******************

%AICBIC Akaike and Bayesian information criteria for model order selection.

% models of the conditional mean and variance to a univariate return series,

% information criteria penalize models with additional parameters, AIC and

% either AIC or BIC, models that minimize the criteria are preferred.

% [AIC , BIC] = aicbic(LLF , NumParams , NumObs)

% Optional Inputs: NumObs

% Inputs:

% values associated with parameter estimates of various models. The LLF

% or the inference function GARCHINFER. Type "help garchfit" or "help

% garchinfer" for details.

% NumParams - Number of estimated parameters associated with each value

% vector the same length as LLF. All elements of NumParams must be

% GARCHCOUNT. Type "help garchcount" for details.

% Optional Input:

% value of LLF. NumObs is required for computing BIC, but is not needed

% vector the same length as LLF. All elements NumObs must be positive

%

% AIC - Vector of AIC statistics associated with each LLF objective

%

%

% function value. The BIC statistic is defined as:

% BIC = -2*LLF + NumParams*Log(NumObs)

%example

load garchdata

[m,n]=size(dem2gbp); %[1974,1]

spec11 = garchset('P',1,'Q',1,'Display','off');

garchdisp(coeff11,errors11)

format long

[AIC,BIC]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值