算法优化:rgb向yuv的转化最优算法,快得让你吃惊(转)

朋友曾经给我推荐了一个有关代码优化的pdf文档《让你的软件飞起来》,看完之后,感受颇深。为了推广其,同时也为了自己加深印象,故将其总结为word文档。下面就是其的详细内容总结,希望能于己于人都有所帮助。

 

速度取决于算法

同样的事情,方法不一样,效果也不一样。比如,汽车引擎,可以让你的速度超越马车,却无法超越音速;涡轮引擎,可以轻松超越音障,却无法飞出地球;如果有火箭发动机,就可以到达火星。

 

代码的运算速度取决于以下几个方面

1、  算法本身的复杂度,比如MPEG比JPEG复杂,JPEG比BMP图片的编码复杂。

2、  CPU自身的速度和设计架构

3、  CPU的总线带宽

4、  您自己代码的写法

本文主要介绍如何优化您自己的code,实现软件的加速。

 

先看看我的需求

我们一个图象模式识别的项目,需要将RGB格式的彩色图像先转换成黑白图像。

图像转换的公式如下:

Y = 0.299 * R + 0.587 * G + 0.114 * B;

图像尺寸640*480*24bit,RGB图像已经按照RGBRGB顺序排列的格式,放在内存里面了。

 

我已经悄悄的完成了第一个优化

以下是输入和输出的定义:

#define XSIZE 640

#define YSIZE 480

#define IMGSIZE XSIZE * YSIZE

typedef struct RGB

{

       unsigned char R;

       unsigned char G;

       unsigned char B;

}RGB;

struct RGB in[IMGSIZE]; //需要计算的原始数据

unsigned char out[IMGSIZE]; //计算后的结果

 

第一个优化

优化原则:图像是一个2D数组,我用一个一维数组来存储。编译器处理一维数组的效率要高过二维数组。

 

先写一个代码:

Y = 0.299 * R + 0.587 * G + 0.114 * B;

 

void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i++)

    {

       double r,g,b,y;

       unsigned char yy;

        r = in[i].r;

        g = in[i].g;

        b = in[i].b;

        y = 0.299 * r + 0.587 * g + 0.114 * b;

        yy = y;

        out[i] = yy;

    }

}

这大概是能想得出来的最简单的写法了,实在看不出有什么毛病,好了,编译一下跑一跑吧。

第一次试跑

这个代码分别用vc6.0和gcc编译,生成2个版本,分别在pc上和我的embedded system上面跑。

速度多少?

在PC上,由于存在硬件浮点处理器,CPU频率也够高,计算速度为20秒。

我的embedded system,没有以上2个优势,浮点操作被编译器分解成了整数运算,运算速度为120秒左右。

 

去掉浮点运算

上面这个代码还没有跑,我已经知道会很慢了,因为这其中有大量的浮点运算。只要能不用浮点运算,一定能快很多。

 

Y = 0.299 * R + 0.587 * G + 0.114 * B;

这个公式怎么能用定点的整数运算替代呢?

0.299 * R可以如何化简?

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y = D + E + F;

D = 0.299 * R;

E = 0.587 * G;

F = 0.114 * B;

我们就先简化算式D吧!

RGB的取值范围都是0~255,都是整数,只是这个系数比较麻烦,不过这个系数可以表示为:0.299 = 299 / 1000;

所以 D = ( R * 299) / 1000;

Y = (R * 299 + G * 587 + B * 114) / 1000;

 

这一下,能快多少呢?

Embedded system上的速度为45秒;

PC上的速度为2秒;

0.299 * R可以如何化简

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y = (R * 299 + G * 587 + B * 114) / 1000;

这个式子好像还有点复杂,可以再砍掉一个除法运算。

前面的算式D可以这样写:

0.299=299/1000=1224/4096

所以 D = (R * 1224) / 4096

Y=(R*1224)/4096+(G*2404)/4096+(B*467)/4096

再简化为:

Y=(R*1224+G*2404+B*467)/4096

这里的/4096除法,因为它是2的N次方,所以可以用移位操作替代,往右移位12bit就是把某个数除以4096了。

 

void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i++)

    {

       int r,g,b,y;

        r = 1224 * in[i].r;

        g = 2404 * in[i].g;

        b = 467 * in[i].b;

        y = r + g + b;

        y = y >> 12; //这里去掉了除法运算

        out[i] = y;

    }

}

这个代码编译后,又快了20%。

虽然快了不少,还是太慢了一些,20秒处理一幅图像,地球人都不能接受。

 

仔细端详一下这个式子!

Y = 0.299 * R + 0.587 * G + 0.114 * B;

Y=D+E+F;

D=0.299*R;

E=0.587*G;

F=0.114*B;

 

RGB的取值有文章可做,RGB的取值永远都大于等于0,小于等于255,我们能不能将D,E,F都预先计算好呢?然后用查表算法计算呢?

我们使用3个数组分别存放DEF的256种可能的取值,然后。。。

 

查表数组初始化

int D[256],F[256],E[256];

void table_init()

{

    int i;

    for(i=0;i<256;i++)

    {

        D[i]=i*1224; 

        D[i]=D[i]>>12;

        E[i]=i*2404; 

        E[i]=E[i]>>12; 

        F[i]=i*467; 

        F[i]=F[i]>>12;

    }

}

void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i++)

    {

       int r,g,b,y;

        r = D[in[i].r];//查表

        g = E[in[i].g];

        b = F[in[i].b];

        y = r + g + b;

        out[i] = y;

    }

}

 

这一次的成绩把我吓出一身冷汗,执行时间居然从30秒一下提高到了2秒!在PC上测试这段代码,眼皮还没眨一下,代码就执行完了。一下提高15倍,爽不爽?

继续优化
很多embedded system的32bit CPU,都至少有2个ALU,能不能让2个ALU都跑起来?

 

void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

    {

       int r,g,b,y,r1,g1,b1,y1;

        r = D[in[i].r];//查表 //这里给第一个ALU执行

        g = E[in[i].g];

        b = F[in[i].b];

        y = r + g + b;

        out[i] = y;

        r1 = D[in[i + 1].r];//查表 //这里给第二个ALU执行

        g1 = E[in[i + 1].g];

        b1 = F[in[i + 1].b];

        y = r1 + g1 + b1;

        out[i + 1] = y;

    }

}

2个ALU处理的数据不能有数据依赖,也就是说:某个ALU的输入条件不能是别的ALU的输出,这样才可以并行。

这次成绩是1秒。

 

查看这个代码

int D[256],F[256],E[256]; //查表数组

void table_init()

{

    int i;

    for(i=0;i<256;i++)

    {

        D[i]=i*1224; 

        D[i]=D[i]>>12;

        E[i]=i*2404; 

        E[i]=E[i]>>12; 

        F[i]=i*467; 

        F[i]=F[i]>>12;

    }

}

到这里,似乎已经足够快了,但是我们反复实验,发现,还有办法再快!

可以将int D[256],F[256],E[256]; //查表数组

更改为

unsigned short D[256],F[256],E[256]; //查表数组

 

这是因为编译器处理int类型和处理unsigned short类型的效率不一样。

再改动

inline void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

    {

       int r,g,b,y,r1,g1,b1,y1;

        r = D[in[i].r];//查表 //这里给第一个ALU执行

        g = E[in[i].g];

        b = F[in[i].b];

        y = r + g + b;

        out[i] = y;

        r1 = D[in[i + 1].r];//查表 //这里给第二个ALU执行

        g1 = E[in[i + 1].g];

        b1 = F[in[i + 1].b];

        y = r1 + g1 + b1;

        out[i + 1] = y;

    }

}

将函数声明为inline,这样编译器就会将其嵌入到母函数中,可以减少CPU调用子函数所产生的开销。

这次速度:0.5秒。

 

其实,我们还可以飞出地球的!

如果加上以下措施,应该还可以更快:

1、  把查表的数据放置在CPU的高速数据CACHE里面;

2、  把函数calc_lum()用汇编语言来写

 

其实,CPU的潜力是很大的

1、  不要抱怨你的CPU,记住一句话:“只要功率足够,砖头都能飞!”

2、  同样的需求,写法不一样,速度可以从120秒变化为0.5秒,说明CPU的潜能是很大的!看你如何去挖掘。

3、  我想:要是Microsoft的工程师都像我这样优化代码,我大概就可以用489跑windows XP了!

 

以上就是对《让你的软件飞起来》的摘录,下面,我将按照这位牛人的介绍,对RGB到YCbCr的转换算法做以总结。

 

Y =   0.299R + 0.587G + 0.114B
 U = -0.147R - 0.289G + 0.436B
 V =  0.615R - 0.515G - 0.100B

 

 

#deinfe SIZE 256

#define XSIZE 640

#define YSIZE 480

#define IMGSIZE XSIZE * YSIZE

typedef struct RGB

{

       unsigned char r;

       unsigned char g;

       unsigned char b;

}RGB;

struct RGB in[IMGSIZE]; //需要计算的原始数据

unsigned char out[IMGSIZE * 3]; //计算后的结果

 

unsigned short Y_R[SIZE],Y_G[SIZE],Y_B[SIZE],U_R[SIZE],U_G[SIZE],U_B[SIZE],V_R[SIZE],V_G[SIZE],V_B[SIZE]; //查表数组

void table_init()

{

    int i;

    for(i = 0; i < SIZE; i++)

    {

        Y_R[i] = (i * 1224) >> 12; //Y对应的查表数组

        Y_G[i] = (i * 2404) >> 12; 

        Y_B[i] = (i * 467)  >> 12;

        U_R[i] = (i * 602)  >> 12; //U对应的查表数组

        U_G[i] = (i * 1183) >> 12; 

        U_B[i] = (i * 1785) >> 12;

        V_R[i] = (i * 2519) >> 12; //V对应的查表数组

        V_G[i] = (i * 2109) >> 12; 

        V_B[i] = (i * 409)  >> 12;

    }

}

 

inline void calc_lum()

{

    int i;

    for(i = 0; i < IMGSIZE; i += 2) //一次并行处理2个数据

    {     

        out[i]               = Y_R[in[i].r] + Y_G[in[i].g] + Y_B[in[i].b]; //Y

        out[i + IMGSIZE]     = U_B[in[i].b] - U_R[in[i].r] - U_G[in[i].g]; //U

        out[i + 2 * IMGSIZE] = V_R[in[i].r] - V_G[in[i].g] - V_B[in[i].b]; //V

 

        out[i + 1]                = Y_R[in[i + 1].r] + Y_G[in[i + 1].g] + Y_B[in[i + 1].b]; //Y

        out[i  + 1 + IMGSIZE]     = U_B[in[i + 1].b] - U_R[in[i + 1].r] - U_G[in[i + 1].g]; //U

        out[i  + 1 + 2 * IMGSIZE] = V_R[in[i + 1].r] - V_G[in[i + 1].g] - V_B[in[i + 1].b]; //V

    }

}

 

根据牛人的观点,这种算法应该是非常快的了,以后可直接使用了。^_^

注:《让你的软件飞起来》下载地址:

http://www.chituwang.com/FileDetail.aspx?articleid=13

 


更多好文章请看:

http://www.chituwang.com/video/index.aspx

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/wxzking/archive/2009/07/11/4339650.aspx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值