学期总结(一)------文献挖掘

 

 

 

我负责的主要部分是文本的分类,运用最基础的朴素贝叶斯分类算法进行处理数据。

一、数据源

采用22673篇文档的数据集,其中的0.7作为训练集,其中的0.3当做测试集来计算roc,测试集一共有6802篇文章的题目和摘要。

二、数据预处理

原始数据是一个TXT中有很多篇文章,包括他的各种属性,我们只把需要的题目和摘要提取出来。

1、分文档:

把一个TXT的多篇文章,每一篇分到一个TXT里面,让每篇文章的唯一标识号作为文章的名称。

import os

def open_text():
    #遍历存放原始文件的目录,获取文件内容
    for dirname in os.listdir(r'C:\Users\wxx\Desktop\train_split2\train_split2'):
        for text_name in os.listdir(r'C:\Users\wxx\Desktop\train_split2\train_split2\{}'.format(dirname)):
            with open(r'C:\Users\wxx\Desktop\train_split2\train_split2\{}\{}'.format(dirname,text_name),'r') as f:
                clean_text(f.readlines(),dirname,text_name)

def clean_text(contents,dirname,text_name):
    #处理文件内容
    if not os.path.exists(r'C:\Users\wxx\Desktop\clean_text\{}'.format(dirname)):
        #创建新的目录来存放处理好的文件
        os.mkdir(r'C:\Users\wxx\Desktop\clean_text\{}'.format(dirname))
    try:
        with open(r'C:\Users\wxx\Desktop\clean_text\{}\{}'.format(dirname,text_name),'w') as f :
            i = 0#内容list下标
            while i < len(contents):
                if i == len(contents)-1:
                    #如果是最后一行
                    f.write(contents[i])
                    i += 1
                    continue
                if not contents[i].startswith(' ')  and not contents[i+1].startswith(' '):
                    #当前行和下一行不是一类内容
                    f.write(contents[i])
                    i += 1
                    continue
                if not contents[i].startswith(' ') and contents[i+1].startswith(' ') :
                    #当前行和下一行是一类内容
                    i += 1
                    str = []
                    str.append(contents[i-1].rstrip('\n'))
                    while i < len(contents) and contents[i].startswith(' '):
                        #合并到一行
                        str.append(contents[i].rstrip('\n'))
                        i += 1
                    str.append('\n')
                    f.write(''.join(str))
        print('{} write successfully'.format(text_name))
    except Exception :
        print('{} has wrong'.format(text_name))
        with open(r'C:\Users\wxx\Desktop\clean_text\error.txt','a') as fe:
            #记录下出错的文件
            fe.write('{} has wrong'.format(text_name))

open_text()

  

2、提取题目和摘要:

# -*- coding: UTF-8 -*-
from os import path
import os
import re

d = path.dirname(__file__)

p = r"C:\Users\tyy1\Desktop\gongzuo\clean_text\Carbon Based" #文件夹目录
files= os.listdir(p) #得到文件夹下的所有文件名称
fd = open('./title and abstract1.txt','a')

for file in files: #遍历文件夹
     if not os.path.isdir(file): #判断是否是文件夹,不是文件夹才打开
          f = open(p+"/"+file); #打开文件
          iter_f = iter(f); #创建迭代器
          str = ""
          for line in iter_f: #遍历文件,一行行遍历,读取文本
            index = line.find("AB  - ")
            index1 = line.find("TI  - ")
            if 'TI  - ' in line:
                index = index + len("TI  - ")
                s2 = line[index:index+200]
                fd.write(s2)
                fd.flush()
            if 'AB  - ' in line:
                index = index + len("AB  - ")
                s1 = line[index:index+2000]
                fd.write(s1+'\n')
                fd.write(" "+'\n')
                fd.flush()

三、数据处理

1、tf-idf算法提取关键词

第一步,计算词频:

考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。

第二步,计算逆文档频率:

第三步,计算TF-IDF:

结果:

import nltk
import os
from nltk.stem import  SnowballStemmer
stemmer = SnowballStemmer("english")
# nltk.download()

from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer

# stopwords = nltk.corpus.stopwords.words('english')
with open(r'C:\Users\wxx\Desktop\全文\stopwords.txt','r') as f:
    stopwords = f.readlines()
    clean_stopwords = []
    for stopword in stopwords:
        clean_stopwords.append(stopword.strip())
# print(clean_stopwords)

# tags = ['FW','NN','NNS','NNP','NNPS']
def open_text():
    corpus = []
    for text_name in os.listdir(r'C:\Users\wxx\Desktop\全文\全文\num'):
        with open(r'C:\Users\wxx\Desktop\全文\全文\num\{}'.format(text_name),'r') as f:
            words_first = []
            sens = nltk.sent_tokenize(f.read())
            for sen in sens:
                for word in nltk.word_tokenize(sen):
                    words_first.append(stemmer.stem(word.strip()))
            words_second = [stemmer.stem(w) for w in words_first if w not in clean_stopwords]
            # words_third = []
            # for word_tag in nltk.pos_tag(words_second):
            #     if word_tagwords_second[1] in tags:
            #         words_third.append(stemmer.stem(word_tag[0]))
            # test = dict(nltk.FreqDist(words_third))
            clean_content = ' '.join(words_second)
            corpus.append(clean_content)
    return corpus

def tfidf(corpus):
    vectorizer = CountVectorizer()
    transformer = TfidfTransformer()
    tfidf = transformer.fit_transform(vectorizer.fit_transform(corpus))
    word = vectorizer.get_feature_names()
    weight = tfidf.toarray()
    for i in range(len(weight)):
        wordlist = []
        valuelist = []
        for j in range(len(word)):
            wordlist.append(word[j])
            valuelist.append(weight[i][j])
        wordandvalue = dict(zip(wordlist, valuelist))
        dd = sorted(wordandvalue.items(), key=lambda d: d[1], reverse=True)
        for i in range(5):  # 显示前五个
            print(dd[i])
        print('--------------------')


tfidf(open_text()) 

2、朴素贝叶斯算法进行分类

第一阶段:训练数据生成训练样本集:TF-IDF

第二阶段;对每个类别计算  P(yi)(先验概率)

第三阶段:对每个特征属性计算所有划分的条件概率P(x/yi)

第四阶段:对每个类别计算P(x/yi)P(yi)

第五阶段:以 P(x/yi)P(yi)最大项作为 的所属类别

#encoding:utf-8
import pandas as pd
import numpy as np
import os


def read_data( path ,classes):
 with open(path,'r') as file:
    lines = file.readlines()
    finallines = []
    pertxt = ""
    i = 0
    for line in lines:
        if line == '\n':
            i += 1
        else:
            i = 0
            pertxt += line
        if i >= 2:
            finallines.append(pertxt)
            pertxt = ""
            i = 0
    txts = pd.DataFrame({"content": finallines})
    txts['classes'] = classes
    txts = txts.dropna()
 return txts

def cleanFormat_test(data):
    txts = data
    stop_txt = pd.read_table(r'C:\Users\PC\Desktop\title and abstract\stopwords.txt', sep='\n', names=['words'])
    stop_txt = stop_txt.dropna()
    english_stopwords =stop_txt.words.values.tolist()
    english_punctuations = [',', '.', ':', ';', '?', '(', ')', '<', '>', '{', '}','[', ']', '!', '@', '#', '%', '$', '*', '/','0','1','2','3','4','5','6','7','8','9',"\n"]

    finallines = []
    for pertxt in txts:
            no_punctual=""
            for w in pertxt:
                if w not in english_punctuations:
                    no_punctual += w
                else: no_punctual += " "
            words=no_punctual.replace("  "," ").split()
            clean_pertxt = ""
            for word in words:
                if word not in english_stopwords:
                    if(len(word)>4):
                        clean_pertxt += word+ " "
            finallines.append(clean_pertxt)
    return finallines




tr1=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\Carbon Based.txt','Carbon Based')
tr2=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\metallic.txt','metallic')
tr3=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\nano ceramic.txt','nano ceramic')
tr4=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\Organic Inorganic.txt','Organic Inorganic')
tr5=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\Polymer.txt','Polymer')
tr6=read_data(r'C:\Users\PC\Desktop\title and abstract\Test Set\Semi-Metallic.txt','Semi-Metallic')
df_data = pd.concat([tr1,tr2,tr3,tr4,tr5,tr6])

from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(df_data['content'].values,df_data['classes'].values,test_size=0.3,random_state=10)


words=df_data.content.values.tolist()
classes=df_data.classes.values.tolist()

orign_content_list = test_x
words=cleanFormat_test(words)
train_x=cleanFormat_test(train_x)
test_x=cleanFormat_test(test_x)


from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer(analyzer='word',  lowercase = False)
vec.fit(train_x)


#训练集数据用来拟合分类器
from sklearn.naive_bayes import MultinomialNB
classifier = MultinomialNB()
classifier.fit(vec.transform(train_x),train_y)


print("贝叶斯分类器精度:")
print(classifier.score(vec.transform(words), classes)) 

四、数据可视化

词云制作:调用python中 matplotlib WordCloud。

 # _*_ coding:utf-8 _*_
 #!/usr/bin/python
 # -*- coding: <encoding name> -*-
import sys
reload(sys)
sys.setdefaultencoding('gbk')
from os import path
import os
from scipy.misc import imread
import matplotlib.pyplot as plt

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator


# 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
# d = path.dirname('.')
d = path.dirname(__file__)

p = r"C:\Users\tyy1\Desktop\gongzuo\wx00-17\wx2016" #文件夹目录
files= os.listdir(p) #得到文件夹下的所有文件名称
s = []
for file in files: #遍历文件夹
     if not os.path.isdir(file): #判断是否是文件夹,不是文件夹才打开
          f = open(p+"/"+file); #打开文件
          iter_f = iter(f); #创建迭代器
          str = " "
          for line in iter_f: #遍历文件,一行行遍历,读取文本
              str = str + line
          s.append(str) #每个文件的文本存到list中

# 设置背景图片,也就是掩膜图像,在非白色部分我们的统计好的词频会显示在这里
alice_coloring = imread(path.join(d, "16.jpg"))


stopwords = set(STOPWORDS)
stopwords.add("Journal")
stopwords.add("Article")
stopwords.add("using")
stopwords.add("used")
stopwords.add("based")
stopwords.add("also")
stopwords.add("However")

wc = WordCloud(background_color="black",  # 背景颜色<br>#max_words=2000,# 词云显示的最大词数
               mask=alice_coloring,  # 设置背景图片
               stopwords=stopwords,
               max_font_size=300,  # 字体最大值
               random_state=50)

# 上述函数设计了词云格式


# 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(' '.join(s))
# 文本词频统计函数,本函数自动统计词的个数,以字典形式内部存储,在显示的时候词频大的,字体也大

# 从背景图片生成颜色值
image_colors = ImageColorGenerator(alice_coloring)

# 以下代码显示图片

plt.figure()
# recolor wordcloud and show
# we could also give color_func=image_colors directly in the constructor
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis("off")
plt.show()

五、分类结果评估

(1)数据集:

  采用2万多篇文档的数据集中的0.3测试集来计算roc,一共有6802篇文章的题目和摘要。

  去标点符号:english_punctuations = [',', '.', ':', ';', '?', '(', ')', '<', '>', '{', '}','[', ']', '!', '@', '#', '%', '$', '*', '/',"\n"]

  去停用词:附件有个stopwords.txt   没有转换大小写。

(2)精确度、召回率、F值:

  混淆矩阵(Confusion Matrix):

真正例(True Positive;TP):将一个正例正确判断成一个正例 

伪正例(False Positive;FP):将一个反例错误判断为一个正例

真反例(True Negtive;TN):将一个反例正确判断为一个反例

伪反例(False Negtive;FN):将一个正例错误判断为一个反例

Ⅰ.精确率(Precision)

预测为正例的样本中,真正为正例的比率.

精确率本质来说是对于预测结果来说的.表示对于结果来说,我对了多少。

Ⅱ.召回率(Recall)

预测为正例的真实正例(TP)占所有真实正例的比例.

召回率是对于原来的样本而言的.表示在原来的样本中,我预测中了其中的多少。

Ⅳ.F值

表示精确率和召回率的调和均值

微精确度为多个混淆矩阵的精确率的平均

 微精确度:0.758751607 

微召回率为多个混淆矩阵的召回率的平均

微召回率:0.763060747

微F1: 0.76090008

(3)AUC和ROC曲线

Ⅰ.FPR伪正类率(False Positive Rate,FPR)------横坐标

Ⅱ.TPR真正类率(Ture Positive Rate,TPR)-------纵坐标

预测为正且实际为正的样本占所有正样本的比例.你会发现,这个不就是召回率

ROC就是对于一个分类器,给定一些阈值,每一个阈值都可以得到一组(FPR,TPR),以FPR作为横坐标,TPR作为纵坐标

AUC:为ROC曲线下面积

第一列是每一篇文献属于这一类的概率

第二列是真实的类别 如果属于这类就为1,不属于就为0

放入Excel中,然后再使用R语言计算AUC,可以直接画出ROC曲线。

第一步:首先加载这个选中的程序包

 

 

第二步,导入文件:

 

第三步:画图,FALSE和TURE是做升序还是降序

第四步:前百分之多少的AUC

(其中top=0.01可以不设置)

第五步:算AUC

得到的结果:

 

第一类:

第二类:

第三类:

第四类:

第五类:

第六类:

 

转载于:https://www.cnblogs.com/tyyhph/p/8433162.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值