$\lim_{h\to 0^{+}}\frac{e^h-1}{h}=1$

引理1:$(1+\frac{1}{n})^{nh}<1+h$.其中$n>1$是一个正整数,$\displaystyle h<\frac{1}{n}$.

 证明:令$h=\frac{1}{p}$($p>n$),则$$\displaystyle(1+\frac{1}{n})^{nh}<1+h\Leftrightarrow(1+\frac{1}{n})^n<(1+\frac{1}{p})^p$$而$$(1+\frac{1}{n})^n<(1+\frac{1}{p})^p$$在$p>n$的时候是成立的(读者应当回忆起这个不等式在引进$e$的时候出现过).

 

由引理1,$\displaystyle\frac{(1+\frac{1}{n})^{nh}-1}{h}<1(h<\frac{1}{n})$.则$\displaystyle \lim_{n\to\infty}\frac{(1+\frac{1}{n})^{nh}-1}{h}\leq 1(h<\frac{1}{n})$.即
\begin{equation}
\lim_{h\to 0^+}\frac{e^h-1}{h}\leq 1
\end{equation}

 

引理2:$\displaystyle(1+\frac{1}{n})^{nh}>1+h$.其中$n>1$是正整数,$\displaystyle \frac{1}{n}<h<\frac{1}{n-1}$.

稍微修改一下引理1的证明,请读者自己证明引理2.

 

由引理2可得,$\displaystyle\frac{(1+\frac{1}{n})^{nh}-1}{h}>1(\frac{1}{n}<h<\frac{1}{n-1})$.则$\displaystyle \lim_{n\to\infty}\frac{(1+\frac{1}{n})^{nh}-1}{h}\geq 1(\frac{1}{n}<h<\frac{1}{n-1})$.即
\begin{equation}
\lim_{h\to 0^+}\frac{e^h-1}{h}\geq 1
\end{equation}
结合(1)和(2)可得$\displaystyle \lim_{h\to 0^+}\frac{e^h-1}{h}=1$.命题证毕.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/06/3828180.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值