A bracket sequence is a string containing only characters "(" and ")".
A regular bracket sequence is a bracket sequence that can be transformed into a correct arithmetic expression by inserting characters "1" and "+" between the original characters of the sequence. For example, bracket sequences "()()", "(())" are regular (the resulting expressions are: "(1)+(1)", "((1+1)+1)"), and ")(" and "(" are not.
You are given nn bracket sequences s1,s2,…,sns1,s2,…,sn. Calculate the number of pairs i,j(1≤i,j≤n)i,j(1≤i,j≤n) such that the bracket sequence si+sjsi+sj is a regular bracket sequence. Operation ++ means concatenation i.e. "()(" + ")()" = "()()()".
If si+sjsi+sj and sj+sisj+si are regular bracket sequences and i≠ji≠j, then both pairs (i,j)(i,j) and (j,i)(j,i) must be counted in the answer. Also, ifsi+sisi+si is a regular bracket sequence, the pair (i,i)(i,i) must be counted in the answer.
The first line contains one integer n(1≤n≤3⋅105)n(1≤n≤3⋅105) — the number of bracket sequences. The following nn lines contain bracket sequences — non-empty strings consisting only of characters "(" and ")". The sum of lengths of all bracket sequences does not exceed 3⋅1053⋅105.
In the single line print a single integer — the number of pairs i,j(1≤i,j≤n)i,j(1≤i,j≤n) such that the bracket sequence si+sjsi+sj is a regular bracket sequence.
3
)
()
(
2
2
()
()
4
In the first example, suitable pairs are (3,1)(3,1) and (2,2)(2,2).
In the second example, any pair is suitable, namely (1,1),(1,2),(2,1),(2,2)(1,1),(1,2),(2,1),(2,2).
题意: 给你n个只包含'('和')'的字符串,问每两个字符串相互组合后形成的完整括号(由左到右都可以匹配)的种数
首先消除每个字符串内的已匹配的括号,如果剩余的字符串还同时含有左括号和右括号,那么这种字符串是不可以和其他字符串匹配成功的,直接剔除。
最后枚举只剩余左括号的,看有多少右括号与之对应,这样避免了重复计数。
#include <map> #include <set> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; const int maxn = 1e6 + 10; const int mod = 1e9 + 7; typedef long long ll; string s[maxn]; map< pair< ll, ll >, ll > mm; ll le[maxn], ri[maxn], vis[maxn]; int main(){ std::ios::sync_with_stdio(false); ll n; while( cin >> n ) { mm.clear(); memset( le, 0, sizeof(le) ); memset( ri, 0, sizeof(ri) ); memset( vis, 0, sizeof(vis) ); for( ll i = 0; i < n; i ++ ) { cin >> s[i]; ll l = 0, r = 0; for( ll j = 0; j < s[i].length(); j ++ ) { if( s[i][j] == '(' ) { l ++; } else if( s[i][j] == ')' && l > 0 ) { l --; } else if( s[i][j] == ')' && l == 0 ) { r ++; } } le[i] = l, ri[i] = r; } for( ll i = 0; i < n; i ++ ) { if( le[i] && ri[i] ) { vis[i] = 1; } } for( ll i = 0; i < n; i ++ ) { if( !vis[i] ) { mm[make_pair(le[i],ri[i])] ++; } } ll ans = 0; for( ll i = 0; i < n; i ++ ) { if( !vis[i] && !ri[i] ) { ans += mm[make_pair(0,le[i])]; } } cout << ans << endl; } return 0; }