量子光学中的分束器

本文详细介绍了光学中分束器的经典描述,包括能量守恒和变换矩阵。接着探讨了分束器的量子力学描述,讨论了幺正矩阵的要求和50:50分束器的具体例子。还分析了分束器描述与角动量算符的关系,通过Schwinger关系展示了角动量算符如何经过旋转变换,以及如何将这些变换应用于产生和湮灭算符。
摘要由CSDN通过智能技术生成
分束器的经典描述

光学中分束器 (beam splitter) 如图所示.

864126-20190605104848819-1453835180.png

输入电场和输出电场以\(\alpha_i,\beta_j\)标记。只考虑单输入\(\alpha_1\),则输出可以写为
\[ \beta_1=\sqrt{1-R}\alpha_1\text{e}^{i\phi_{1,T}} \]

\[ \beta_2=\sqrt{R}\alpha_1\text{e}^{i\phi_{1,R}} \]

其中\(R\)是能量反射系数,于是能量守恒:\(|\alpha_1|^2=|\beta_1|^2+|\beta_2|^2\).

现在考虑两路输入,于是输入输出可以整合为一个矩阵关系
\[ \begin{pmatrix} \beta_1\\\beta_2 \end{pmatrix}= \begin{pmatrix} \sqrt{1-R}\text{e}^{i\phi_{1,T}}&\sqrt{R}\text{e}^{i\phi_{2,R}}\\ \sqrt{R}\text{e}^{i\phi_{1,R}}&\sqrt{1-R}\text{e}^{i\phi_{2,T}} \end{pmatrix} \begin{pmatrix} \alpha_1\\\alpha_2 \end{pmatrix} \]
能量守恒要求\(|\alpha_1|^2+|\alpha_2|^2=|\beta_1|^2+|\beta_2|^2\),就是要求
\[ \text{e}^{i(\phi_{2,R}-\phi_{1,T})}+\text{e}^{\phi_{2,T}-\phi_{1,R}}=0 \]
只要不违背上面方程,四个相位可以随意选取。如果选择\(\phi_{2,t}=\pi\)而其他三个相位为零,则变换矩阵为
\[ \begin{pmatrix} \sqrt{1-R}&\sqrt{R}\\\sqrt{R}&-\sqrt{1-R} \end{pmatrix} \]
如果选取\(\phi_{1,R}=\phi_{2,R}=\pi/2\),其他两个相位为零,则变换矩阵为
\[ \begin{pmatrix} \sqrt{1-R}&i\sqrt{R}\\i\sqrt{R}&\sqrt{1-R} \end{pmatrix} \]
对50:50分束器有\(R=1/2\).

分束器的量子力学描述

864126-20190605104900240-1978495142.png

输入输出的关系是线性的,可以写为
\[ \begin{pmatrix} \hat{b}_1\\\hat{b}_2 \end{pmatrix}= \begin{pmatrix} t'&r\\r'&t \end{pmatrix} \begin{pmatrix} \hat{a}_1\\\hat{a}_2 \end{pmatrix} \]
展开上式就知道命名为\(t,r\)的意义:分别代表透射和反射。

如果要求新的 \(\hat{b}_i^{(\dagger)}\) 满足玻色子对易关系,则可推得变换矩阵必须是幺正矩阵,即必须满足
\[ \left\{ \begin{aligned} &|t'|^2+|r|^2=1\\ &|r'|^2+|t|^2=1\\ &t'r'^*+rt^*=0 \end{aligned} \right. \Rightarrow \left\{ \begin{aligned} &|r'|=|r|\\ &|t'|=|t|\\ &|r|^2+|t|^2=1\\ &r^*t'

  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值