Python金融应用编程:衍生品定价和套期保值的随机过程

本文介绍了随机过程在金融领域的应用,特别是用于衍生品定价和套期保值。文章涵盖了布朗运动、几何布朗运动、默顿跳跃扩散过程、赫斯顿随机波动率过程、Cox Ingersoll Ross和Ornstein-Uhlenbeck随机过程,以及Black-Scholes模型和模拟方法在衍生品定价中的作用。通过Python实现这些过程,展示了它们在模拟资产价格和利率变化中的行为。
摘要由CSDN通过智能技术生成

随机过程对定量融资的许多方面都很有用,包括但不限于衍生品定价,风险管理和投资管理。这些应用程序将在本文后面进一步详细讨论。本节介绍了量化融资中使用的一些流行的随机过程及其在Python中的实现。

模型参数

模型参数类包含以下随机过程使用的所有参数。为了便于理解,这些参数的前缀是它们所用的随机过程的名称。随机过程的校准将涉及寻找与某些历史数据相符的参数值。对于那些感兴趣的校准,将在我博客后面的后续帖子中讨论。

 

绘制结果图

下面的代码使用Matplotlib来绘制一组随机过程。

 

布朗运动随机过程

布朗运动 是由悬浮在气体或液体中的颗粒表现出的随机运动。这种随机运动是由颗粒与液体或气体中的原子或分子碰撞引起的。布朗运动以植物学家罗伯特·布朗的名字命名,他观察了1827年的随机运动。布朗运动与金融市场之间的关系可以追溯到1900年路易斯·巴舍利尔撰写的题为“投机理论 ” 的论文。 他的论文是第一个提出使用布朗运动来评估股票期权的论文。这篇论文直到后来才得出由Fisher Black和Myron Scholes于1973年开发的着名的Black Scholes期权定价公式。在金融中使用的随机过程的背景下,Brownian Motion经常被描述为Wiener过程,用表示t。Wiener过程由以下属性描述,WtWt

W0=0W0=0

函数是连续的t→Wtt→Wt

具有独立的正态分布增量,即Wt-Ws ~N(0,t-s)WtWtWt−WsWt−WsN(0,t−s)N(0,t−s)

在实践中,布朗运动不用于模拟资产价格。我已将其包含在内,因为它是本文中讨论的每个其他随机过程的基础。

以下是此方法生成的输出示例。请注意,平均而言,生成的路径不会随着时间的推移而向上或向下漂移,换句话说,预期的回报为零。

 

 

使用布朗运动随机过程模拟资产价格

 

 

几何布朗运动随机过程

几何布朗运动(GBM)由费舍尔布莱克和迈伦斯科尔斯推广,他们在1973年的论文“期权定价和公司负债”中使用它来推导出Black Scholes方程。几何布朗运动基本上是布朗运动,具有漂移分量和波动率分量。描述几何布朗运动随机过程演化的随机微分方程是,

dSt=μStdt+σdStWtdSt=μStdt+σdStWt

其中是资产价格S在时间t的变化 ; μ是每年预期的百分比漂移,dt代表时间(1dStdStSSttμμdtdt用于每日变化),σ是资产价格中预期的每日波动率,Wt是Wiener过程,也称为布朗运动。如下所示,布朗运动代码用于几何布朗运动方法以构造Wt的序列。12521252σσWtWtWtWt

以下是此方法生成的输出示例。请注意,平均而言,生成的路径随着时间的推移而向上漂移,并且可能的结束价格变化较大。在这个例子中,路径以每年14%的平均速率增长,因此预期回报率等于14%,分别为三年和一年(800天)。

 

 

使用几何布朗运动随机过程模拟资产价格

 

 

默顿跳跃扩散随机过程

Robert C. Merton是最早解决Fisher Black和Myron Scholes提出的几何布朗随机过程中一些局限性的学者之一。1997年&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值