随机过程对定量融资的许多方面都很有用,包括但不限于衍生品定价,风险管理和投资管理。这些应用程序将在本文后面进一步详细讨论。本节介绍了量化融资中使用的一些流行的随机过程及其在Python中的实现。
模型参数
模型参数类包含以下随机过程使用的所有参数。为了便于理解,这些参数的前缀是它们所用的随机过程的名称。随机过程的校准将涉及寻找与某些历史数据相符的参数值。对于那些感兴趣的校准,将在我博客后面的后续帖子中讨论。
绘制结果图
下面的代码使用Matplotlib来绘制一组随机过程。
布朗运动随机过程
布朗运动 是由悬浮在气体或液体中的颗粒表现出的随机运动。这种随机运动是由颗粒与液体或气体中的原子或分子碰撞引起的。布朗运动以植物学家罗伯特·布朗的名字命名,他观察了1827年的随机运动。布朗运动与金融市场之间的关系可以追溯到1900年路易斯·巴舍利尔撰写的题为“投机理论 ” 的论文。 他的论文是第一个提出使用布朗运动来评估股票期权的论文。这篇论文直到后来才得出由Fisher Black和Myron Scholes于1973年开发的着名的Black Scholes期权定价公式。在金融中使用的随机过程的背景下,Brownian Motion经常被描述为Wiener过程,用表示t。Wiener过程由以下属性描述,WtWt
W0=0W0=0
函数是连续的t→Wtt→Wt
具有独立的正态分布增量,即Wt-Ws ~N(0,t-s)WtWtWt−WsWt−WsN(0,t−s)N(0,t−s)
在实践中,布朗运动不用于模拟资产价格。我已将其包含在内,因为它是本文中讨论的每个其他随机过程的基础。
以下是此方法生成的输出示例。请注意,平均而言,生成的路径不会随着时间的推移而向上或向下漂移,换句话说,预期的回报为零。
使用布朗运动随机过程模拟资产价格
几何布朗运动随机过程
几何布朗运动(GBM)由费舍尔布莱克和迈伦斯科尔斯推广,他们在1973年的论文“期权定价和公司负债”中使用它来推导出Black Scholes方程。几何布朗运动基本上是布朗运动,具有漂移分量和波动率分量。描述几何布朗运动随机过程演化的随机微分方程是,
dSt=μStdt+σdStWtdSt=μStdt+σdStWt
其中是资产价格S在时间t的变化 ; μ是每年预期的百分比漂移,dt代表时间(1dStdStSSttμμdtdt用于每日变化),σ是资产价格中预期的每日波动率,Wt是Wiener过程,也称为布朗运动。如下所示,布朗运动代码用于几何布朗运动方法以构造Wt的序列。12521252σσWtWtWtWt
以下是此方法生成的输出示例。请注意,平均而言,生成的路径随着时间的推移而向上漂移,并且可能的结束价格变化较大。在这个例子中,路径以每年14%的平均速率增长,因此预期回报率等于14%,分别为三年和一年(800天)。
使用几何布朗运动随机过程模拟资产价格
默顿跳跃扩散随机过程
Robert C. Merton是最早解决Fisher Black和Myron Scholes提出的几何布朗随机过程中一些局限性的学者之一。1997年&