LogPolar 对数极坐标
对数极坐标(logpolar)是仿真生物视网膜中央凹陷的特性,具有数据压缩的能力,可用于目标跟踪中快速尺度和旋转变换不变的模板匹配。
对数极坐标其实就是将图像像素坐标转换成极坐标,然后对r求取对数,获得的坐标。
直角坐标系和极坐标系的变换公式为:
具体过程是怎么样的呢?首先要选定坐标原点,然后才能变换。一般坐标原点选为图像的中心点,如果直接对每一个像素点计算对应的坐标,首先得到的结果并不是个矩阵,其次这样之后再逆变换到图像上,信息并没有变化。
所以在转换计算时,使用如下图类似的结构。
这个结构包含32个同心圆,每个同心圆上有64个区域,其中径向上相邻的区域大小变化时线性的,距离中心越远,区域越大。
在变换时,每个区域计算均值,然后该区域转换到坐标下,就获得的矩阵,如下图示意
如果我们将得到的坐标下的图像再映射回直角坐标系中,那么离中心近的区域显然分辨率较高,而距离远的区域就相当于经过了均值滤波。如下图
由于图像都是矩阵,没有环形的,所以在转换过程中,肯定会碰到超出图像边界的区域,这时候采用0值替代。
OpenCV中logpolar转换函数为
void cvLogPolar(const CvArrsrc, CvArr dst, CvPoint2D32f center,double M,int flags)
src: 输入图像
dst: 输出图像
center: 设置的坐标原点位置
M: 尺度参数
flag: 标志位和插值方法
CV_INTER_LINEAR 内部采用线性插值,注意由于M的存在结果可能不会相邻整数,中间需要差值,逆变换也需要插值
CV_WARP_FILL_OUTLIERS 对于超出图像边界区域如何处理
- CV_WARP_INVERSE_MAP 标志位,未设置表示转换成极坐标,设置表示由极坐标变回直角坐标
示例:
测试图像
代码
- #include "highgui.h"
- #include "cv.h"
-
- int main(int argc, char** argv)
- {
- IplImage* img = cvLoadImage(argv[1]);
- cvNamedWindow("Origin");
- cvShowImage("Origin", img);
- IplImage* out = cvCreateImage(cvSize(img->width, img->height), img->depth, img->nChannels);
- cvLogPolar(img, out, cvPoint2D32f(img->width / 2, img->height / 2), 40, CV_INTER_LINEAR + CV_WARP_FILL_OUTLIERS);
- cvNamedWindow("logPolar");
- cvShowImage("logPolar", out);
- IplImage* back = cvCreateImage(cvGetSize(img), img->depth, img->nChannels);
- cvLogPolar(out, back, cvPoint2D32f(img->width / 2, img->height / 2), 40, CV_INTER_LINEAR + CV_WARP_FILL_OUTLIERS + CV_WARP_INVERSE_MAP);
- cvNamedWindow("Reconstructure");
- cvShowImage("Reconstructure", back);
- cvWaitKey(0);
- cvReleaseImage(&img);
- cvDestroyWindow("Origin");
- cvReleaseImage(&out);
- cvDestroyWindow("logPolar");
- cvReleaseImage(&back);
- cvDestroyWindow("Reconstructure");
- }
-
得到结果图像:
可以发现中间分辨率还是可以的,但是周围显然模糊了好多。
当然还可以设置不同的中心位置,和不同的尺度参数。
内部不设置插值方式的结果