原理:什么是Quadtrees?
由于3D图形卡消费市场的变革,现在3D游戏越来越流行了,他们中大部分是第一人称射击游戏,这 是一个很好的理由,这个理由是室内环境,当和室外环境相比它非常简单。对于室外环境,它没有方便 的通往下一关的楼梯,门,或墙来阻挡你的视线。室外环境都是连续的。对于传统的几何学来说这是非 常棘手的,请打入quadtrees来学习下面的知识。
注意:下面的图示都是从上到下看一个3D地形,方格显示了在X和Y轴上的地形,并看不见现 实中的物体高度,因为我们是顺着Y轴看的。
Figure 1
设想你的地形是一个非常大的方格,在一个X和Z的面上扩展,如图1。我们有一个摄象机在地形的右 下角,它的可视截面(蓝三角)扩展为在相同方向上的小单元,这样在优化前,绘制地形的程序代码看 起来象这样:
for(int ctr=0; ctr {
DrawCell();
}
注意:一个小单元就是一个包含一些三角形的正方形,它是地形的一部分),看起来非常好,但是本 来我们只是占用了16个单元,可是画了256个。这是非常大的浪费,在我们的可视截面里只有5个单元。 现在第一个优化:我们要测试所有的单元是否在可视截面里,如果在就画他,现在的代码如下:
for(int ctr=0; ctr {
if(cell is in frustum) DrawCell();
}
如果单元在我们的可视截面中,就画他,非常正确。现在我们只画了5个单元,而不是256个,我们只 是更改很少的代码。在上面,我们保存了我们没有绘出的251个单元,每次都是,这是非常的浪费,如下图:
Figure 2
我将一些单元变成了兰色,这样我们可以建立一个包围盒,如果兰色的单元不在截面内,我们可以安全 的说这个单元在区域A中,如果我们知道兰色的单元不在截面内,我们如何去测试区域A中的其他144个单元 呢,这由quadtrees 来工作
quadtrees 是从地形中获得的,把它分割成四个较小的部分,每一个部分继续分下去,直到一个分到 一个设定的大小,这看起来有点乱,让我结合图片解释一下,首先,从我们的网格出发,现在将他分为四份。
Figure 3
由于3D图形卡消费市场的变革,现在3D游戏越来越流行了,他们中大部分是第一人称射击游戏,这 是一个很好的理由,这个理由是室内环境,当和室外环境相比它非常简单。对于室外环境,它没有方便 的通往下一关的楼梯,门,或墙来阻挡你的视线。室外环境都是连续的。对于传统的几何学来说这是非 常棘手的,请打入quadtrees来学习下面的知识。
注意:下面的图示都是从上到下看一个3D地形,方格显示了在X和Y轴上的地形,并看不见现 实中的物体高度,因为我们是顺着Y轴看的。
Figure 1
设想你的地形是一个非常大的方格,在一个X和Z的面上扩展,如图1。我们有一个摄象机在地形的右 下角,它的可视截面(蓝三角)扩展为在相同方向上的小单元,这样在优化前,绘制地形的程序代码看 起来象这样:
for(int ctr=0; ctr {
DrawCell();
}
注意:一个小单元就是一个包含一些三角形的正方形,它是地形的一部分),看起来非常好,但是本 来我们只是占用了16个单元,可是画了256个。这是非常大的浪费,在我们的可视截面里只有5个单元。 现在第一个优化:我们要测试所有的单元是否在可视截面里,如果在就画他,现在的代码如下:
for(int ctr=0; ctr {
if(cell is in frustum) DrawCell();
}
如果单元在我们的可视截面中,就画他,非常正确。现在我们只画了5个单元,而不是256个,我们只 是更改很少的代码。在上面,我们保存了我们没有绘出的251个单元,每次都是,这是非常的浪费,如下图:
Figure 2
我将一些单元变成了兰色,这样我们可以建立一个包围盒,如果兰色的单元不在截面内,我们可以安全 的说这个单元在区域A中,如果我们知道兰色的单元不在截面内,我们如何去测试区域A中的其他144个单元 呢,这由quadtrees 来工作
quadtrees 是从地形中获得的,把它分割成四个较小的部分,每一个部分继续分下去,直到一个分到 一个设定的大小,这看起来有点乱,让我结合图片解释一下,首先,从我们的网格出发,现在将他分为四份。
Figure 3
如图三,我们现在有四个子地形,继续分下去,知道一个部分只有一个单元,,在下图中,我们把第一个 小部分分成了四个更小的部分。
Figure 4
然后继续:
Figure 5
然后继续:
Figure 6
Figure 4
然后继续:
Figure 5
然后继续:
Figure 6
好了,现在第一个部件只有一个单元大小,我们告诉树停止分割第一个部件,分割下一个,直到 全部分割完毕。当然你也可以将树分割到合适的三角形数目停止,在我们的例子中为16个三角形,第 一,这个树是父子关系,每个子节点有一个父节点,每个父节点有四个子节点,叶节点例外,他只有 一个父节点没有子节点。叶节点是我们允许的最小的子节点,第二,每个树都有一个根节点,它没有 父节点,但有四个子节点。
再看一下图,暗红的边界就是根节点,在图3中,我们分割根节点,分配给他的子节点。蓝线描绘 的正方形是根节点的四个子。称为节点2,3,4,5。在图4 ,我们把节点2分为四份,这些正方形是 节点的子,称为节点6,7,8,9。继续由节点6分割出10,11,12,13,由节点10分割为14,15, 16,17。这是他们的叶节点。停止分割。分割节点11,分完后是12和13,然后是7,8,和9。然后是 3,4,5。完成。
quadtrees 使用一个节点的包围坐标工作,我们说我们的图形0-16在X轴上,0-16在Z轴上。由于 这个原因,我们整个地图的包围坐标为左上为(0,0,0)右上(16,0,0)左下(0,0,16)右下 (16,0,16)当我们分割父节点时,我们就分割他的包围坐标,于是节点2的包围坐标为:左上 (0,0,0)右上(8,0,0)左下(0,0,8)右下(8,0,8)如图7.
Figure 7
Test 1
方法如下:我们从根节点开始问“摄象机是否在根节点的包围坐标内?”我们说是。我们知道摄 象机在根节点的一个子节点内,于是测试他们,“摄象机在节点2的包围坐标内吗?”这里回答不, 于是我们离开节点2和它的子节点。这样我们就可以不用测试节点2的64个单元了,不坏,不坏。
Figure 8
Test 2
你可以看图8,我移出了节点2和它的子节点。继续测试,“摄象机在节点3的包围坐标内吗?” ,回答不,于是我们可以安全的离开节点3和它的子节点。
Figure 9
Test 3
继续“摄象机在节点4的包围坐标内吗?”回答不测试节点5。
Figure 10
再看一下图,暗红的边界就是根节点,在图3中,我们分割根节点,分配给他的子节点。蓝线描绘 的正方形是根节点的四个子。称为节点2,3,4,5。在图4 ,我们把节点2分为四份,这些正方形是 节点的子,称为节点6,7,8,9。继续由节点6分割出10,11,12,13,由节点10分割为14,15, 16,17。这是他们的叶节点。停止分割。分割节点11,分完后是12和13,然后是7,8,和9。然后是 3,4,5。完成。
quadtrees 使用一个节点的包围坐标工作,我们说我们的图形0-16在X轴上,0-16在Z轴上。由于 这个原因,我们整个地图的包围坐标为左上为(0,0,0)右上(16,0,0)左下(0,0,16)右下 (16,0,16)当我们分割父节点时,我们就分割他的包围坐标,于是节点2的包围坐标为:左上 (0,0,0)右上(8,0,0)左下(0,0,8)右下(8,0,8)如图7.
Figure 7
Test 1
方法如下:我们从根节点开始问“摄象机是否在根节点的包围坐标内?”我们说是。我们知道摄 象机在根节点的一个子节点内,于是测试他们,“摄象机在节点2的包围坐标内吗?”这里回答不, 于是我们离开节点2和它的子节点。这样我们就可以不用测试节点2的64个单元了,不坏,不坏。
Figure 8
Test 2
你可以看图8,我移出了节点2和它的子节点。继续测试,“摄象机在节点3的包围坐标内吗?” ,回答不,于是我们可以安全的离开节点3和它的子节点。
Figure 9
Test 3
继续“摄象机在节点4的包围坐标内吗?”回答不测试节点5。
Figure 10
Test 4
这时,摄象机在节点5的包围坐标内,我们测试它的子节点,我们给他的子节点命名为A,B,C,D, 测试第一个子节点“摄象机在节点A的包围坐标内吗?”如图10,不在,于是我们离开节点A和它的子节点。
Figure 11
Test 5
现在测试节点5的第二个子节点,“摄象机在节点B的包围坐标内吗?”如图11。不在
Figure 12
Test 6
现在测试节点5的第三个子节点,“摄象机在节点C的包围坐标内吗?”如图12。不在
Figure 13
Test 7
OK,他一定在节点D中,“摄象机在节点D的包围坐标内吗?”,是的,太好了,我们将在这里停止。 考虑一下上面的测试,共有16次测试(节点D内),结果是有5个单元被看见,测试总数是7+16为23。 我们从256减少为23次。
A quadtree is used to dismiss large chunks of terrain at a time. If an apple is on a tree's leaf, chopping off the branches the apple is nowhere near saves you looking on every leaf.
编码
Before we go any further, I advise those who are unsure about Indexed Lists to read through my tutorial here.
我们需要:
一个保存我们QUADTREE数据的结构
一个建立树的函数
一个保存三角形数据的结构
typedef struct node
{
int bType;
VERTEX vBoundingCoordinates[4];
unsigned int uiBranches[4];
unsigned int uiVertexStrip1[8];
unsigned int uiVertexStrip2[8];
unsigned int uiVertexStrip3[8];
unsigned int uiVertexStrip4[8];
unsigned int uiID;
unsigned int uiParentID;
}NODE;
变量bType告诉我们节点的类型,可以为NODE_TYPE or LEAF_TYPE,如果我们画树的话,他用 来作为一个标志告诉程序停止或画一些三角形(LEAF_TYPE),或继续向下解析树(NODE_TYPE)。 下一个变量是一个包含4个顶点的数组,他用来保存节点的包围坐标,VERTEX定义如下
typedef struct vertex
{
float x,y,z;
}VERTEX;
我们还有一个叫做uiBranches的数组,他保存了四个索引值,代表了节点的四个子节点,如果本 节点类型是LEAF_TYPE,就不使用。
由于我们说每个叶节点保存16个多边形,这里有四个数组,名为uiVertexStrip1到uiVertexStrip4, 每个数组保存四个三角形。在本向导中,他们没被使用
变量uiID保存了QUADTREE的节点ID,在我解释他以前,QUADTREE就如同一个节点的数组,这个ID就是 数组的索引
T让我们看看最后一个变量,uiParentID,它是父节点的索引,让我们用自己的方法来遍历这棵树,对 于给定的节点,我们可以从它的父节点遍历到它的子节点,对于下面给定一个树,我们如何遍历他呢,
NODE *pNodeList;
这是一个pNodeList的指针,它是一个QUADTREE,注意:我们使用数组pNodeList[0] 作为根节点。
Formula 1.
上面的公式给出了叶节点的数目,叶宽指的是每个叶的三角形数目,这里我们称叶节点为单元,也可以说每 个单元包含16个三角形,那么这里的叶宽为4个三角形,Grid Width 指的是格子的宽度,由于每个单元有4个 三角形,Grid Width 为16个单元乘以4是64,为了求出树中的节点数,使用下面的函数:
un
这时,摄象机在节点5的包围坐标内,我们测试它的子节点,我们给他的子节点命名为A,B,C,D, 测试第一个子节点“摄象机在节点A的包围坐标内吗?”如图10,不在,于是我们离开节点A和它的子节点。
Figure 11
Test 5
现在测试节点5的第二个子节点,“摄象机在节点B的包围坐标内吗?”如图11。不在
Figure 12
Test 6
现在测试节点5的第三个子节点,“摄象机在节点C的包围坐标内吗?”如图12。不在
Figure 13
Test 7
OK,他一定在节点D中,“摄象机在节点D的包围坐标内吗?”,是的,太好了,我们将在这里停止。 考虑一下上面的测试,共有16次测试(节点D内),结果是有5个单元被看见,测试总数是7+16为23。 我们从256减少为23次。
A quadtree is used to dismiss large chunks of terrain at a time. If an apple is on a tree's leaf, chopping off the branches the apple is nowhere near saves you looking on every leaf.
编码
Before we go any further, I advise those who are unsure about Indexed Lists to read through my tutorial here.
我们需要:
一个保存我们QUADTREE数据的结构
一个建立树的函数
一个保存三角形数据的结构
typedef struct node
{
int bType;
VERTEX vBoundingCoordinates[4];
unsigned int uiBranches[4];
unsigned int uiVertexStrip1[8];
unsigned int uiVertexStrip2[8];
unsigned int uiVertexStrip3[8];
unsigned int uiVertexStrip4[8];
unsigned int uiID;
unsigned int uiParentID;
}NODE;
变量bType告诉我们节点的类型,可以为NODE_TYPE or LEAF_TYPE,如果我们画树的话,他用 来作为一个标志告诉程序停止或画一些三角形(LEAF_TYPE),或继续向下解析树(NODE_TYPE)。 下一个变量是一个包含4个顶点的数组,他用来保存节点的包围坐标,VERTEX定义如下
typedef struct vertex
{
float x,y,z;
}VERTEX;
我们还有一个叫做uiBranches的数组,他保存了四个索引值,代表了节点的四个子节点,如果本 节点类型是LEAF_TYPE,就不使用。
由于我们说每个叶节点保存16个多边形,这里有四个数组,名为uiVertexStrip1到uiVertexStrip4, 每个数组保存四个三角形。在本向导中,他们没被使用
变量uiID保存了QUADTREE的节点ID,在我解释他以前,QUADTREE就如同一个节点的数组,这个ID就是 数组的索引
T让我们看看最后一个变量,uiParentID,它是父节点的索引,让我们用自己的方法来遍历这棵树,对 于给定的节点,我们可以从它的父节点遍历到它的子节点,对于下面给定一个树,我们如何遍历他呢,
NODE *pNodeList;
这是一个pNodeList的指针,它是一个QUADTREE,注意:我们使用数组pNodeList[0] 作为根节点。
Formula 1.
上面的公式给出了叶节点的数目,叶宽指的是每个叶的三角形数目,这里我们称叶节点为单元,也可以说每 个单元包含16个三角形,那么这里的叶宽为4个三角形,Grid Width 指的是格子的宽度,由于每个单元有4个 三角形,Grid Width 为16个单元乘以4是64,为了求出树中的节点数,使用下面的函数:
un
这里函数CalcNodeNum 有两个参数,叶节点的数目(MAX)和叶宽(MIN),在这里叶宽为4 个三角形,叶节点的数目包含在上面的公式中,为了更好的理解上面的函数,给出下面的代码:
unsigned int Temp =(GridWidth/4)*(GridWidth/4);
unsigned int Temp2 = CalcNodeNum(Temp,4);
pNodeList = (NODE*)malloc(sizeof(NODE)*Temp2);
首先计算叶节点的总数,其次保存节点的总数到变量Temp2,第三行是为指针分配内存,现在 我们已经技术了节点的总数并分配了内存,接着调用QUADTREE的建立函数。
但是首先,让我们回忆一下递归的代码,如果我们想显示数目1到10,我们可以这样做:
void Count(int num)
{
cout< }
void main()
{
Count(0);
Count(1);
Count(2);
Count(3);
Count(4);
Count(5);
Count(6);
Count(7);
Count(8);
Count(9);
return;
}
这样做很乏味,可以这样
for(int ctr=0;ctr<10;ctr++)
{
Count(ctr);
}
虽然上面的代码没有任何错误,但在QUADTREE中使用他简直是噩梦,在上面我们调用了10次,如 果我们想调用20次,我们不得不告诉FOR循环使用20次,而递归只需要一次。他不需要FOR或WHILE结 构,正确的代码如下:
void Count(int num)
{
static int ctr = 0;
if(ctr>num)
{return;}
else
{
cout< ctr++;
Count(num);
}
}
void main()
{
Count(ctr);
return;
}
现在让我们看看函数CreateNode,象它的名字一样,他用来建立节点,实际他不仅可以建立一个 节点,还可以建立整个树,我们只要调用函数一次,
void CreateNode(unsigned int Bounding[4],unsigned int ParentID,unsigned int NodeID)
在一个2D数组中扩展为高度为0的X和Z的面,为发现左上坐标,使用下面的公式
右上为:
左下
右下
数学并不困难,现在准备调用:
unsigned int uiBoundingCoordinates[] =
{0,GridWidth,(GridHeight*(GridWidth+1)),((GridHeight)*(GridWidth+1))+GridWidth};
CreateNode(uiBoundingCoordinates,0,0);
父节点已经建立好了,我们可以通过CreateNode来工作了。.
void CreateNode(unsigned int Bounding[4],unsigned int ParentID,unsigned int NodeID)
{
static unsigned int TotalTreeID = 0;
unsigned int uiNodeType;
unsigned int uiWidth,uiHeight;
OK,静态变量TotalTreeID保存了当前的节点数目,我们最后使用他来将子节点与他们的ID联系起 来,uiNodeType保存节点的类型,uiWidth,uiHeight保存节点的宽和高,由于我们传送的是包围坐 标,实际上我们并不知道节点的大小,我们使用uiWidth,uiHeight来告诉节点是叶节点还是普通节点 ,现在需要从包围坐标中获得uiWidth,uiHeight:
uiWidth = fVerts[(Bounding[1]*3)] - fVerts[(Bounding[0]*3)];
uiHeight = fVerts[(Bounding[2]*3)+2] - fVerts[(Bounding[0]*3)+2];
T这里假设fVerts是一个包含顶点列表的数组,每个顶点包含3个部件,X,Y,Z,如果我们有顶点的 索引,就可以获得指向这个顶点的指针,
Figure 14
如同你看见的一样,索引0指向element[0],element[0]是顶点0的X部件,依次类推。 现在,我们说我们的叶节点是4*4的三角形,这意味着叶宽为4三角形,由于我们知道节点的宽度(存储 在uiWidth),如果我们分割宽度的结果为2,那么意味着这个宽度为4,这个节点就是一个叶节点,
if(0.5*uiWidth==2)
{
uiNodeType = LEAF_TYPE;
}
else
{
uiNodeType = NODE_TYPE;
}
接着,我们想得到一个指向我们节点的指针,pNodeList包含所有我们的节点,我们需要选择一个。
NODE *pNode = &pNodeList[NodeID];
向节点内填充内容
pNodeList[NodeID].uID = Whatever;
我们可以简单的做:
pNode->uiID = Whatever;
用我们得到的值填充
pNode->uiID = NodeID;
pNode->uiParentID = ParentID;
pNode->vBoundingCoordinates[0].x = fVerts[(Bounding[0]*3)];
pNode->vBoundingCoordinates[0].y = fVerts[(Bounding[0]*3)+1];
pNode->vBoundingCoordinates[0].z = fVerts[(Bounding[0]*3)+2];
pNode->vBoundingCoordinates[1].x = fVerts[(Bounding[1]*3)];
pNode->vBoundingCoordinates[1].y = fVerts[(Bounding[1]*3)+1];
pNode->vBoundingCoordinates[1].z = fVerts[(Bounding[1]*3)+2];
pNode->vBoundingCoordinates[2].x = fVerts[(Bounding[2]*3)];
pNode->vBoundingCoordinates[2].y = fVerts[(Bounding[2]*3)+1];
pNode->vBoundingCoordinates[2].z = fVerts[(Bounding[2]*3)+2];
pNode->vBoundingCoordinates[3].x = fVerts[(Bounding[3]*3)];
pNode->vBoundingCoordinates[3].y = fVerts[(Bounding[3]*3)+1];
pNode->vBoundingCoordinates[3].z = fVerts[(Bounding[3]*3)+2];
pNode->bType = uiNodeType;
unsigned int Temp =(GridWidth/4)*(GridWidth/4);
unsigned int Temp2 = CalcNodeNum(Temp,4);
pNodeList = (NODE*)malloc(sizeof(NODE)*Temp2);
首先计算叶节点的总数,其次保存节点的总数到变量Temp2,第三行是为指针分配内存,现在 我们已经技术了节点的总数并分配了内存,接着调用QUADTREE的建立函数。
但是首先,让我们回忆一下递归的代码,如果我们想显示数目1到10,我们可以这样做:
void Count(int num)
{
cout< }
void main()
{
Count(0);
Count(1);
Count(2);
Count(3);
Count(4);
Count(5);
Count(6);
Count(7);
Count(8);
Count(9);
return;
}
这样做很乏味,可以这样
for(int ctr=0;ctr<10;ctr++)
{
Count(ctr);
}
虽然上面的代码没有任何错误,但在QUADTREE中使用他简直是噩梦,在上面我们调用了10次,如 果我们想调用20次,我们不得不告诉FOR循环使用20次,而递归只需要一次。他不需要FOR或WHILE结 构,正确的代码如下:
void Count(int num)
{
static int ctr = 0;
if(ctr>num)
{return;}
else
{
cout< ctr++;
Count(num);
}
}
void main()
{
Count(ctr);
return;
}
现在让我们看看函数CreateNode,象它的名字一样,他用来建立节点,实际他不仅可以建立一个 节点,还可以建立整个树,我们只要调用函数一次,
void CreateNode(unsigned int Bounding[4],unsigned int ParentID,unsigned int NodeID)
在一个2D数组中扩展为高度为0的X和Z的面,为发现左上坐标,使用下面的公式
右上为:
左下
右下
数学并不困难,现在准备调用:
unsigned int uiBoundingCoordinates[] =
{0,GridWidth,(GridHeight*(GridWidth+1)),((GridHeight)*(GridWidth+1))+GridWidth};
CreateNode(uiBoundingCoordinates,0,0);
父节点已经建立好了,我们可以通过CreateNode来工作了。.
void CreateNode(unsigned int Bounding[4],unsigned int ParentID,unsigned int NodeID)
{
static unsigned int TotalTreeID = 0;
unsigned int uiNodeType;
unsigned int uiWidth,uiHeight;
OK,静态变量TotalTreeID保存了当前的节点数目,我们最后使用他来将子节点与他们的ID联系起 来,uiNodeType保存节点的类型,uiWidth,uiHeight保存节点的宽和高,由于我们传送的是包围坐 标,实际上我们并不知道节点的大小,我们使用uiWidth,uiHeight来告诉节点是叶节点还是普通节点 ,现在需要从包围坐标中获得uiWidth,uiHeight:
uiWidth = fVerts[(Bounding[1]*3)] - fVerts[(Bounding[0]*3)];
uiHeight = fVerts[(Bounding[2]*3)+2] - fVerts[(Bounding[0]*3)+2];
T这里假设fVerts是一个包含顶点列表的数组,每个顶点包含3个部件,X,Y,Z,如果我们有顶点的 索引,就可以获得指向这个顶点的指针,
Figure 14
如同你看见的一样,索引0指向element[0],element[0]是顶点0的X部件,依次类推。 现在,我们说我们的叶节点是4*4的三角形,这意味着叶宽为4三角形,由于我们知道节点的宽度(存储 在uiWidth),如果我们分割宽度的结果为2,那么意味着这个宽度为4,这个节点就是一个叶节点,
if(0.5*uiWidth==2)
{
uiNodeType = LEAF_TYPE;
}
else
{
uiNodeType = NODE_TYPE;
}
接着,我们想得到一个指向我们节点的指针,pNodeList包含所有我们的节点,我们需要选择一个。
NODE *pNode = &pNodeList[NodeID];
向节点内填充内容
pNodeList[NodeID].uID = Whatever;
我们可以简单的做:
pNode->uiID = Whatever;
用我们得到的值填充
pNode->uiID = NodeID;
pNode->uiParentID = ParentID;
pNode->vBoundingCoordinates[0].x = fVerts[(Bounding[0]*3)];
pNode->vBoundingCoordinates[0].y = fVerts[(Bounding[0]*3)+1];
pNode->vBoundingCoordinates[0].z = fVerts[(Bounding[0]*3)+2];
pNode->vBoundingCoordinates[1].x = fVerts[(Bounding[1]*3)];
pNode->vBoundingCoordinates[1].y = fVerts[(Bounding[1]*3)+1];
pNode->vBoundingCoordinates[1].z = fVerts[(Bounding[1]*3)+2];
pNode->vBoundingCoordinates[2].x = fVerts[(Bounding[2]*3)];
pNode->vBoundingCoordinates[2].y = fVerts[(Bounding[2]*3)+1];
pNode->vBoundingCoordinates[2].z = fVerts[(Bounding[2]*3)+2];
pNode->vBoundingCoordinates[3].x = fVerts[(Bounding[3]*3)];
pNode->vBoundingCoordinates[3].y = fVerts[(Bounding[3]*3)+1];
pNode->vBoundingCoordinates[3].z = fVerts[(Bounding[3]*3)+2];
pNode->bType = uiNodeType;