BZOJ 1009 GT考试(ac自动机+矩阵DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1009

题意:给定一个长度为m的串s。有多少种长度为n的串不包含s?

思路:(1)将s插入trie建立ac自动机。(2)以自动机中的状态作为节点,建立矩阵A[i][j],A[i][j]=1表示j节点为合法状态,也就是能向j转移。(3)计算ans=A^n,则ans=sum(ans[0][i])。

 
 
 
struct node
{
    int next[10],fail,flag;
 
    void init()
    {
        clr(next,0);
        fail=-1;
        flag=0;
    }
};
 
node a[N];
int e,n,m,K;
char s[N];
 

void insert(char s[])
{
    int i,k,p=0;
    for(i=0;s[i];i++)
    {
        k=s[i]-'0';
        if(a[p].next[k]==0)
        {
            a[e].init();
            a[p].next[k]=e++;
        }
        p=a[p].next[k];
    }
    a[p].flag=1;
}
 
queue<int> Q;
 
void build()
{
    Q.push(0);
    int i,j,k,p,q;
    while(!Q.empty())
    {
        k=Q.front();
        Q.pop();
        for(i=0;i<10;i++)
        {
            if(a[k].next[i])
            {
                p=a[k].next[i];
                q=a[k].fail;
                while(q!=-1&&!a[q].next[i]) q=a[q].fail;
                if(q==-1) a[p].fail=0;
                else
                {
                    a[p].fail=a[q].next[i];
                    a[p].flag|=a[a[p].fail].flag;
                }
                Q.push(p);
            }
            else
            {
                q=a[k].fail;
                while(q!=-1&&!a[q].next[i]) q=a[q].fail;
                if(q==-1) a[k].next[i]=0;
                else a[k].next[i]=a[q].next[i];
            }
        }
    }
}
 

class Matrix
{
public:
    u64 a[N][N];
 
    void init(int x)
    {
        clr(a,0);
        int i;
        if(x==1)
        {
            FOR0(i,e) a[i][i]=1;
        }
    }
 
    Matrix operator*(Matrix a)
    {
        Matrix ans,p=*this;
        ans.init(0);
        int i,j,k;
        FOR0(k,e) FOR0(i,e) FOR0(j,e)
        {
            ans.a[i][j]+=p.a[i][k]*a.a[k][j];
            ans.a[i][j]%=K;
        }
        return ans;
    }
 
    Matrix Pow(int n)
    {
        Matrix ans,p=*this;
        ans.init(1);
        while(n)
        {
            if(n&1) ans=ans*p;
            p=p*p;
            n>>=1;
        }
        return ans;
    }
};
 
Matrix p;
 
int main()
{
    scanf("%d%d%d",&n,&m,&K);
    a[0].init();e=1;
    RD(s),insert(s);
    int i,j,k;
    build(); p.init(0);
    FOR0(i,e) if(!a[i].flag) FOR0(j,10)
    {
        k=a[i].next[j];
        if(!a[k].flag) p.a[i][k]++;
    }
    p=p.Pow(n);
    u64 ans=0;
    FOR0(i,e) ans=(ans+p.a[0][i])%K;
    PR(ans);
    return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值