平面的隐函数定理

已知函数$F(x,y)=ax+by$.其中$a,b\in\mathbf{R},b\neq 0$.设点$(x_0,y_0)$满足$F(x_0,y_0)=0$.则存在以$(x_0,y_0)$为中心的开方块
\begin{equation}
\label{eq:14.17.39}
D\times E\subset\Omega
\end{equation}
使得对任何一个$x\in D$,恰好存在唯一一个$y\in E$,满足方程\begin{equation}\label{eq:14.17.41}F(x,y)=0\end{equation}这就是说,方程$F(x,y)=0$确定了一个从$D$到$E$的函数$y=f(x)$.这函数$y=f(x)$在$D$连续可微,它的导数可以按照下式计算:
\begin{equation}
\label{eq:22.13.1}
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial
x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}
\end{equation}

证明:这个命题是显然的.因为通过求平面$z=ax+by$与$xy$平面的交线,容易求得$\frac{dy}{dx}=\frac{-a}{b}$.这正是$-\frac{\frac{\partial
F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}$.

 

之所以我要做这个命题,是因为我要证明隐函数定理,但是我对隐含数定理没有直观的把握,因此我先做这种简单的状况.而且,这个命题虽然简单,但是有几何意义,如图,$\tan \alpha=\frac{AO}{OB}$,$\tan \beta=\frac{AO}{OC}$,而$\tan\gamma =\frac{OC}{OB}$,可见$\tan\gamma=\frac{\tan\alpha}{\tan\beta}$.忽略符号,可得$|\tan\alpha|=|\frac{\partial F}{\partial x}(x_0)|$,$|\tan\beta|=|\frac{\partial F}{\partial y}(x_0)|$.$|\tan\gamma|=|\frac{dy}{dx}|$.可见,平面的隐函数定理是有鲜明的几何意义的,这可以给我证明一般的隐函数定理的时候提供直观的素材和很好的提示.

 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/10/22/3827891.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值