数学分析 隐函数定理及其应用(第18章)

一.隐函数
1.概念:
在这里插入图片描述

注:①这里只表示存在着定义在 I I I上,值域包含于 J J J的函数 f f f,而不意味着 y y y能用 x x x的某一显式来表示
在这里插入图片描述
在这里插入图片描述

2.存在性
在这里插入图片描述
在这里插入图片描述
3.隐函数定理
(1)隐函数存在唯一性定理:

定理18.1:若函数 F ( x , y ) F(x,y) F(x,y)满足:
F F F在以 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为内点的某一区域 D ⊂ R 2 D\sub R^2 DR2上连续
F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0(通常称为初始条件)
F F F D D D上存在连续的偏导数 F y ( x , y ) F_y(x,y) Fy(x,y)
F y ( x 0 , y 0 ) ≠ 0 F_y(x_0,y_0)≠0 Fy(x0,y0)=0

①存在点 P 0 P_0 P0的某邻域 U ( P 0 ) ⊂ D U(P_0)\sub D U(P0)D,在 U ( P 0 ) U(P_0) U(P0)上方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0唯一地决定了1个定义在某区间 ( x 0 − α , x 0 + α ) (x_0-α,x_0+α) (x0α,x0+α)上的(隐)函数 y = f ( x ) y=f(x) y=f(x),使得当 x ∈ ( x 0 − α , x 0 + α ) x∈(x_0-α,x_0+α) x(x0α,x0+α)时, ( x , f ( x ) ) ∈ U ( P 0 ) (x,f(x))∈U(P_0) (x,f(x))U(P0) F ( x , f ( x ) ) ≡ 0 , f ( x 0 ) = y 0 F(x,f(x))\equiv0,f(x_0)=y_0 F(x,f(x))0,f(x0)=y0
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

(2)隐函数可微性定理:

定理18.2:设 F ( x , y ) F(x,y) F(x,y)满足隐函数存在唯一性定理中的4个条件,又设在 D D D上还存在连续的偏导数 F x ( x , y ) F_x(x,y) Fx(x,y),则由方程(1)所确定的隐函数 y = f ( x ) y=f(x) y=f(x)在其定义域 ( x 0 − α , x 0 + α ) (x_0-α,x_0+α) (x0α,x0+α)上有连续偏导数,且 f ′ ( x ) = − F x ( x , y ) F y ( x , y ) ( 5 ) f'(x)=-\frac{F_x(x,y)}{F_y(x,y)}\qquad(5) f(x)=Fy(x,y)Fx(x,y)(5)
在这里插入图片描述
在这里插入图片描述

(3)隐函数极值问题:
在这里插入图片描述
(4)多元隐函数的唯一存在与连续可微定理:

定理18.3:若
①函数 F ( x 1 , x 2 . . . x n , y ) F(x_1,x_2...x_n,y) F(x1,x2...xn,y)在以点 P 0 ( x 1 0 , x 2 0 . . . x n 0 , y 0 ) P_0(x_1^0,x_2^0...x_n^0,y^0) P0(x10,x20...xn0,y0)为内点的区域 D ⊂ R n + 1 D\sub R^{n+1} DRn+1上连续
F ( x 1 0 , x 2 0 . . . x n 0 , y 0 ) = 0 F(x_1^0,x_2^0...x_n^0,y^0)=0 F(x10,x20...xn0,y0)=0
③偏导数 F x 1 , F x 2 . . . F x n , F y F_{x_1},F_{x_2}...F_{x_n},F_y Fx1,Fx2...Fxn,Fy D D D上存在且连续
F y ( x 1 0 , x 2 0 . . . x n 0 , y 0 ) ≠ 0 F_y(x_1^0,x_2^0...x_n^0,y^0)≠0 Fy(x10,x20...xn0,y0)=0

①存在点 P 0 P_0 P0的某邻域 U ( P 0 ) ⊂ D U(P_0)\sub D U(P0)D,在 U ( P 0 ) U(P_0) U(P0)上方程 F ( x 1 , x 2 . . . x n , y ) = 0 F(x_1,x_2...x_n,y)=0 F(x1,x2...xn,y)=0唯一地确定了1个定义在 Q 0 ( x 1 0 , x 2 0 . . . x n 0 ) Q_0(x_1^0,x_2^0...x_n^0) Q0(x10,x20...xn0)的某邻域 U ( Q 0 ) ⊂ R n U(Q_0)\sub R^n U(Q0)Rn上的 n n n元连续(隐)函数 y = f ( x 1 , x 2 . . . x n ) y=f(x_1,x_2...x_n) y=f(x1,x2...xn),使得当 ( x 1 , x 2 . . . x n ) ∈ U ( Q 0 ) (x_1,x_2...x_n)\in U(Q_0) (x1,x2...xn)U(Q0)时,有 ( x 1 , x 2 . . . x n , f ( x 1 , x 2 . . . x n ) ) ∈ U ( P 0 ) (x_1,x_2...x_n,f(x_1,x_2...x_n))∈U(P_0) (x1,x2...xn,f(x1,x2...xn))U(P0) F ( x 1 , x 2 . . . x n , f ( x 1 , x 2 . . . x n ) ) ≡ 0 , y 0 = f ( ( x 1 0 , x 2 0 . . . x n 0 ) F(x_1,x_2...x_n,f(x_1,x_2...x_n))\equiv0,y^0=f((x_1^0,x_2^0...x_n^0) F(x1,x2...xn,f(x1,x2...xn))0,y0=f((x10,x20...xn0)
y = f ( x 1 , x 2 . . . x n ) y=f(x_1,x_2...x_n) y=f(x1,x2...xn) U ( Q 0 ) U(Q_0) U(Q0)上有连续偏导数 f x 1 , f x 2 . . . f x n f_{x_1},f_{x_2}...f_{x_n} fx1,fx2...fxn,且 f x 1 = − F x 1 F y , f x 2 = − F x 2 F y . . . f x n = − F x n F y f_{x_1}=-\frac{F_{x_1}}{F_y},f_{x_2}=-\frac{F_{x_2}}{F_y}...f_{x_n}=-\frac{F_{x_n}}{F_y} fx1=FyFx1,fx2=FyFx2...fxn=FyFxn

4.隐函数的反函数:
在这里插入图片描述

二.隐函数组
1.概念:
在这里插入图片描述
在这里插入图片描述
2.隐函数组定理
(1)函数行列式:
在这里插入图片描述
(2)隐函数组定理:

定理18.4:若
F ( x , y , u , v ) , G ( x , y , u , v ) F(x,y,u,v),G(x,y,u,v) F(x,y,u,v),G(x,y,u,v)在以点 P 0 P_0 P0为内点的区域 V ⊂ R 4 V\sub R^4 VR4上连续
F ( x 0 , y 0 , u 0 , v 0 ) = G ( x 0 , y 0 , u 0 , v 0 ) F(x_0,y_0,u_0,v_0)=G(x_0,y_0,u_0,v_0) F(x0,y0,u0,v0)=G(x0,y0,u0,v0)(初始条件)
③在 V V V F , G F,G F,G具有1阶连续偏导数
J = ∂ ( F , G ) ∂ ( u , v ) J=\frac{\partial(F,G)}{\partial(u,v)} J=(u,v)(F,G)在点 P 0 P_0 P0处不等于0

①存在点 P 0 P_0 P0的某(4维空间)邻域 U ( P 0 ) ⊂ V U(P_0)\sub V U(P0)V,在 U ( P 0 ) U(P_0) U(P0)上方程组(1)唯一地确定了定义在点 Q 0 ( x 0 , y 0 ) Q_0(x_0,y_0) Q0(x0,y0)的某(2维空间)邻域 U ( Q 0 ) U(Q_0) U(Q0)上的2个二元隐函数 u = f ( x , y ) , v = g ( x , y ) u=f(x,y),v=g(x,y) u=f(x,y),v=g(x,y)使得 u 0 = f ( x 0 , y 0 ) , v 0 = g ( x 0 , y 0 ) u_0=f(x_0,y_0),v_0=g(x_0,y_0) u0=f(x0,y0),v0=g(x0,y0),且当 ( x , y ) ∈ U ( Q 0 ) (x,y)∈U(Q_0) (x,y)U(Q0)时,有 ( x , y , f ( x , y ) , g ( x , y ) ) ∈ U ( P 0 ) F ( x , y , f ( x , y ) , g ( x , y ) ) ≡ 0 G ( x , y , f ( x , y ) , g ( x , y ) ) ≡ 0 (x,y,f(x,y),g(x,y))∈U(P_0)\\F(x,y,f(x,y),g(x,y))\equiv0\\G(x,y,f(x,y),g(x,y))\equiv0 (x,y,f(x,y),g(x,y))U(P0)F(x,y,f(x,y),g(x,y))0G(x,y,f(x,y),g(x,y))0 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y) U ( Q 0 ) U(Q_0) U(Q0)上连续
f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y) U ( Q 0 ) U(Q_0) U(Q0)上有1阶连续偏导数,且 ∂ u ∂ x = − 1 J ∂ ( F , G ) ∂ ( x , v ) , ∂ v ∂ x = − 1 J ∂ ( F , G ) ∂ ( u , x ) ∂ u ∂ y = − 1 J ∂ ( F , G ) ∂ ( y , v ) , ∂ v ∂ y = − 1 J ∂ ( F , G ) ∂ ( u , y ) ( 5 ) \begin{matrix}\frac{\partial u}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(x,v)},\frac{\partial v}{\partial x}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,x)}\\\frac{\partial u}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(y,v)},\frac{\partial v}{\partial y}=-\frac{1}{J}\frac{\partial(F,G)}{\partial(u,y)}\end{matrix}\qquad(5) xu=J1(x,v)(F,G),xv=J1(u,x)(F,G)yu=J1(y,v)(F,G),yv=J1(u,y)(F,G)(5)
在这里插入图片描述

3.反函数组与坐标变换
(1)反函数组:
在这里插入图片描述
在这里插入图片描述
(2)反函数组定理:

定理18.5:设函数组(9)及其1阶偏导数在某区域 D ⊂ R 2 D\sub R^2 DR2上连续,点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) D D D的内点,且 u 0 = u ( x 0 , y 0 ) , v 0 = v ( x 0 , y 0 ) , ∂ ( u , v ) ∂ ( x , y ) ∣ P 0 ≠ 0 u_0=u(x_0,y_0),v_0=v(x_0,y_0),\frac{\partial(u,v)}{\partial(x,y)}|_{P_0}≠0 u0=u(x0,y0),v0=v(x0,y0),(x,y)(u,v)P0=0则在点 P 0 ′ ( u 0 , v 0 ) P_0'(u_0,v_0) P0(u0,v0)的某邻域 U ( P 0 ′ ) U(P_0') U(P0)上存在唯一的1组反函数(10),使得 x 0 = x ( u 0 , v 0 ) , y 0 = y ( u 0 , v 0 ) x_0=x(u_0,v_0),y_0=y(u_0,v_0) x0=x(u0,v0),y0=y(u0,v0),且当 ( u , v ) ∈ U ( P 0 ′ ) (u,v)∈U(P_0') (u,v)U(P0)时,有 ( x ( u , v ) , y ( u , v ) ) ∈ U ( P 0 ) (x(u,v),y(u,v))∈U(P_0) (x(u,v),y(u,v))U(P0)以及恒等式(11);此外,反函数组(10)在 U ( P 0 ′ ) U(P_0') U(P0)上存在连续的1阶偏导数,且 ∂ x ∂ u = ∂ v ∂ y / ∂ ( u , v ) ∂ ( x , y ) , ∂ x ∂ v = − ∂ u ∂ y / ∂ ( u , v ) ∂ ( x , y ) ∂ y ∂ u = − ∂ v ∂ x / ∂ ( u , v ) ∂ ( x , y ) , ∂ y ∂ v = ∂ u ∂ x / ∂ ( u , v ) ∂ ( x , y ) ( 13 ) \begin{matrix}\frac{\partial x}{\partial u}=\frac{\partial v}{\partial y}/\frac{\partial(u,v)}{\partial(x,y)},\frac{\partial x}{\partial v}=-\frac{\partial u}{\partial y}/\frac{\partial(u,v)}{\partial(x,y)}\\\frac{\partial y}{\partial u}=-\frac{\partial v}{\partial x}/\frac{\partial(u,v)}{\partial(x,y)},\frac{\partial y}{\partial v}=\frac{\partial u}{\partial x}/\frac{\partial(u,v)}{\partial(x,y)}\end{matrix}\qquad(13) ux=yv/(x,y)(u,v),vx=yu/(x,y)(u,v)uy=xv/(x,y)(u,v),vy=xu/(x,y)(u,v)(13)
在这里插入图片描述
在这里插入图片描述

(3)坐标变换:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
三.几何应用
1.平面曲线的切线与法线:
在这里插入图片描述
在这里插入图片描述
2.空间曲线的切线与法平面
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
3.曲面的切平面与法线:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四.条件极值
1.条件极值问题:
在这里插入图片描述
2.拉格朗日乘数法:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理18.6:设在条件(2)的限制下,求函数(3)的极值问题,其中 f , φ k   ( k = 1 , 2... m ) f,φ_k\,(k=1,2...m) f,φk(k=1,2...m)在区域 D D D上有连续的1阶偏导数;若 D D D的内点 P 0 ( x 1 ( 0 ) . . . x n ( 0 ) ) P_0(x_1^{(0)}...x_n^{(0)}) P0(x1(0)...xn(0))是上述问题的极值点,且雅可比矩阵 [ ∂ φ 1 ∂ x 1 . . . ∂ φ 1 ∂ x n . . . . . . ∂ φ m ∂ x 1 . . . ∂ φ m ∂ x n ] ( 13 ) \left[\begin{matrix}\frac{\partialφ_1}{\partial x_1}&...&\frac{\partialφ_1}{\partial x_n}\\...&&...\\\frac{\partialφ_m}{\partial x_1}&...&\frac{\partialφ_m}{\partial x_n}\end{matrix}\right]\qquad(13) x1φ1...x1φm......xnφ1...xnφm(13)的秩为 m m m,则 ∃ m ∃m m个常数 λ 1 ( 0 ) . . . λ m ( 0 ) λ_1^{(0)}...λ_m^{(0)} λ1(0)...λm(0),使得 ( x 1 ( 0 ) . . . x n ( 0 ) , λ 1 ( 0 ) . . . λ m ( 0 ) ) (x_1^{(0)}...x_n^{(0)},λ_1^{(0)}...λ_m^{(0)}) (x1(0)...xn(0),λ1(0)...λm(0))为拉格朗日函数(12)的稳定点,即 ( x 1 ( 0 ) . . . x n ( 0 ) , λ 1 ( 0 ) . . . λ m ( 0 ) ) (x_1^{(0)}...x_n^{(0)},λ_1^{(0)}...λ_m^{(0)}) (x1(0)...xn(0),λ1(0)...λm(0)) n + m n+m n+m个方程 { L x 1 = ∂ f ∂ x 1 + ∑ k = 1 m λ k ∂ φ k ∂ x 1 = 0 . . . L x n = ∂ f ∂ x n + ∑ k = 1 m λ k ∂ φ k ∂ x n = 0 L λ 1 = φ 1 ( x 1 . . . x n ) . . . L λ m = φ m ( x 1 . . . x n ) \begin{cases}L_{x1}=\frac{\partial f}{\partial x_1}+\displaystyle\sum_{k=1}^mλ_k\frac{\partialφ_k}{\partial x_1}=0\\...\\L_{x_n}=\frac{\partial f}{\partial x_n}+\displaystyle\sum_{k=1}^mλ_k\frac{\partialφ_k}{\partial x_n}=0\\L_{λ_1}=φ_1(x_1...x_n)\\...\\L_{λ_m}=φ_m(x_1...x_n)\end{cases} Lx1=x1f+k=1mλkx1φk=0...Lxn=xnf+k=1mλkxnφk=0Lλ1=φ1(x1...xn)...Lλm=φm(x1...xn)的解
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值