Product
Accepts: 21
Submissions: 171
Time Limit: 6000/3000 MS (Java/Others)
Memory Limit: 131072/131072 K (Java/Others)
问题描述
给n个数{A}_{1},{A}_{2}....{A}_{n}A1,A2....An,表示N=\prod_{i=1}^{n}{i}^{{A}_{i}}N=∏i=1niAi。求N所有约数之积。
输入描述
输入有多组数据. 每组数据第一行包含一个整数n.(1\leq n\leq {10}^{5})(1≤n≤105) 第二行n个整数{A}_{1},{A}_{2}....{A}_{n}A1,A2....An,保证不全为0.(0\leq {A}_{i}\leq {10}^{5})(0≤Ai≤105). 数据保证 \sum n\leq 500000∑n≤500000.
输出描述
对于每组数据输出一行为答案对{10}^{9}+7109+7取模的值.
输入样例
4 0 1 1 0 5 1 2 3 4 5
输出样例
36 473272463
官方题解:
做了一道div1的第三题,很好的一道题
参考了别人的代码,其中一处是(p^index)%mod,如果index很大的话,根据欧拉定理,就可以变成(p^(index%(phi(mod))))%mod。记录一下。
代码:
#pragma warning(disable:4996)
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <string>
#include <cstring>
using namespace std;
typedef long long ll;
ll N;
const int maxn = 100010;
const ll mod = 1e9 + 7;
const ll mod2 = 2 * (mod - 1);
ll index[maxn], L[maxn], R[maxn];
int num, pri[maxn], vis[maxn];
vector<int>have[maxn];
void init()
{
num = 0;
int i, j, n;
for (i = 2; i < maxn; i++)
{
if (vis[i])
continue;
pri[++num] = i;
for (j = i + i; j < maxn; j = j + i)
{
vis[j] = 1;
}
}
for (i = 1; i < maxn; i++)
{
n = i;
for (j = 1; j <= num&&pri[j] <= n; j++)
{
while (n%pri[j] == 0)
{
have[i].push_back(j);//记录所含有的质数,用质数的下标记录
n /= pri[j];
}
}
}
}
ll getresult(ll A, ll n, ll k)
{
ll b = 1;
while (n > 0)
{
if (n & 1)
{
b = (b*A) % k;
}
n = n >> 1;
A = (A*A) % k;
}
return b;
}
void solve(int cishu, int n)
{
int temp;
int si = have[cishu].size();
for (int i = 0; i < si; i++)
{
temp = have[cishu][i];
index[temp] = (index[temp] + n) % mod2;
}
}
int main()
{
//freopen("i.txt", "r", stdin);
//freopen("o.txt", "w", stdout);
int x;
ll k, n, ans;
init();
while (scanf("%d", &N) == 1)
{
memset(index, 0, sizeof(index));
for (int i = 1; i <= N; i++)
{
scanf("%d", &x);
solve(i, x);
}
int p = 1;
while (pri[p] < N)
p++;
N = p;
L[0] = R[N + 1] = 1;
for (int i = 1; i <= N; i++)
L[i] = L[i - 1] * (index[i] + 1) % mod2;
for (int i = N; i >= 1; i--)
R[i] = R[i + 1] * (index[i] + 1) % mod2;
ans = 1;
for (int i = 1; i <= N; i++)
{
k = L[i - 1] * R[i + 1] % mod2;
n = index[i] * (index[i] + 1) / 2 % mod2;
ans = ans*getresult(pri[i], n*k%mod2,mod) % mod;
}
printf("%lld\n", ans);
}
//system("pause");
return 0;
}