HDU 5525 Product

首先 4可以转化为2²这样 即对于 1 2 3 4 5 6 这样的输入 可以转化为 1 16 9 0 1 0 这样 即表示成一些素数的k次方的乘积的形式

假设N=2²3³5³ 则N的因子 可以通过枚举取几个2,3,5 来计算出来 由于要计算所有 因子的乘积 

所以当我们考虑2这一维时 其他的数一共只有(3+1)*(3+1) 16 种取法 而2这一维可以取1,2,2²这三种 所以2对于结果的影响f(2)=2的((0+1+2)*16) 次方

讲所有的f(p)乘起来即可 由于计算幂的时候要取模 而取模的又是指数 所以要模mod-1(即euler(mod)) 而计算2本身时的个数时 应该是num[2]*(num[2]+1)/2 %(mod-1)

这里先做乘法可能会爆longlong 而先取模可能导致 无法除2 所以可以先特判 然后除2 然后再取模 也可以先%(2*mod) 再相乘除2 再模mod

而对于某一个数 其他数的选取总方案数 用了两个数组前缀积和后缀积来维护 从而避免了除法的操作  (因为1e9+6是合数 所以不能求逆)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<algorithm>
#include<set>
#define scnaf scanf
#define cahr char
#define bug puts("=========================");
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
const int mod=1000000007;
const int mod2=1000000006;
//几乎线性的速度
const int MAXP=maxn+5;
bool is_prime[MAXP];
int prime[MAXP/5],np;
void init_prim(int n){
    memset(is_prime, true, sizeof(is_prime));
    int first = 1;
    np = first;
    for (int i = 2; i <= n; i++){
        if (is_prime[i])  prime[np++] = i;
        for (int j = first; ((j < np) && (i * prime[j] <= n));  ++j){
            is_prime[i * prime[j]] = 0;
            if (i % prime[j] == 0) break; //点睛之笔
        }
    }
}
vector<int>vec[maxn];
void init()
{
    for(int i=2;i<maxn;i++)
    {
        int now=i;
        for(int j=1;prime[j]*prime[j]<=now;j++)
        while(now%prime[j]==0)
        {
            vec[i].push_back(prime[j]);
            now/=prime[j];
        }
        if(now!=1) vec[i].push_back(now);
    }
}
ll a[maxn];
ll numl[maxn],numr[maxn];
ll powmod(ll a,ll b)
{
    ll res=1;
    while(b)
    {
        if(b&1) res=res*a%mod;
        a=a*a%mod;
        b/=2;
    }
    return res;
}
ll mul(ll x)
{
    ll a=x;
    ll b=x+1;
    if(a&1) b/=2;
    else a/=2;
    return (a%mod2)*(b%mod2)%mod2;
}
int main()
{
    init_prim(MAXP-5);
    init();
    int n;
    while(~scanf("%d",&n))
    {
        memset(a,0,sizeof(a));
        for(int i=1;i<=n;i++)
        {
            int z;
            scanf("%d",&z);
            for(int j=0;j<vec[i].size();j++)
              a[vec[i][j]]+=z;
        }
        int cnt=1;
        numl[0]=1;
        for( ;prime[cnt]<=n;cnt++){
            numl[cnt]=numl[cnt-1]*(a[prime[cnt]]+1)%mod2;
        }
        numr[cnt--]=1;
        for(;cnt>0;cnt--){
            numr[cnt]=numr[cnt+1]*(a[prime[cnt]]+1)%mod2;
        }
        ll ans=1;
        for(int i=1;prime[i]<=n;i++)
        if(a[prime[i]])
        {
            ll num=numl[i-1]*numr[i+1]%mod2;
      //      cout<<numl[i-1]<<" "<<numr[i+1]<<endl;
            ll x=powmod(prime[i],mul(a[prime[i]])*num%mod2)%mod;
            ans=ans*x%mod;
        }
        printf("%I64d\n",ans);

    }

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值