OpenCV轮廓检测,计算物体旋转角度

这篇博客探讨了使用OpenCV进行轮廓检测时如何计算物体的旋转角度。作者指出目前实现的效果存在一些问题,并提供了相关的代码参考链接,鼓励读者共同参与讨论和改进。
摘要由CSDN通过智能技术生成

 

 

效果还是有点问题的,希望大家共同探讨一下

 

 

// FindRotation-angle.cpp : 定义控制台应用程序的入口点。
//

// findContours.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"



#include <iostream>
#include <vector>
#include <opencv2/opencv.hpp> 
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>


#pragma comment(lib,"opencv_core2410d.lib")      
#pragma comment(lib,"opencv_highgui2410d.lib")      
#pragma comment(lib,"opencv_imgproc2410d.lib") 

#define PI 3.1415926

using namespace std;
using namespace cv;



int hough_line(Mat src)
{
	//【1】载入原始图和Mat变量定义   
	Mat srcImage = src;//imread("1.jpg");  //工程目录下应该有一张名为1.jpg的素材图
	Mat midImage,dstImage;//临时变量和目标图的定义

	//【2】进行边缘检测和转化为灰度图
	Canny(srcImage, midImage, 50, 200, 3);//进行一此canny边缘检测
	cvtColor(midImage,dstImage, CV_GRAY2BGR);//转化边缘检测后的图为灰度图

	//【3】进行霍夫线变换
	vector<Vec4i> lines;//定义一个矢量结构lines用于存放得到的线段矢量集合
	HoughLinesP(midImage, lines, 1, CV_PI/180, 80, 50, 10 );

	//【4】依次在图中绘制出每条线段
	for( size_t i = 0; i < lines.size(); i++ )
	{
		Vec4i l = lines[i];
		line( ds
### 回答1: OpenCV中的矩(Moment)方法可以通过计算图像的质心来计算旋转角度。以下是使用矩方法计算旋转角度的步骤: 1. 加载图像并将其转换为灰度图像。 2. 通过阈值处理和形态学操作(如闭操作)来提取图像中的目标物体。 3. 使用findContours函数来检测目标物体轮廓计算轮廓的矩。 4. 根据计算出的矩,可以计算出目标物体的质心。 5. 使用moments函数来计算目标物体关于其质心的灯条矩,其中m20、m02和m11是矩阵的一些元素。 6. 利用灯条矩可以计算得到图像的旋转角度。 - 计算tan(2θ) = 2 * m11 / (m20 - m02) - 计算旋转角度θ = 0.5 * atan(tan(2θ)) 通过以上步骤,可以使用OpenCV的矩方法计算得到图像的旋转角度。这种方法适用于检测目标物体旋转角度,例如,旋转矩形或椭圆。它可以在图像处理和计算机视觉领域中被广泛应用,能够提供准确的旋转角度信息。 ### 回答2: 在OpenCV中,可以使用矩方法来计算旋转角度。首先,我们需要定义一个旋转矩阵,可以使用 `getRotationMatrix2D` 函数来实现。该函数需要指定旋转中心点、旋转角度以及缩放因子。然后,可以使用 `warpAffine` 函数来应用旋转矩阵到图像上。 以下是具体的步骤: 1. 导入OpenCV库,并读取图像。 2. 定义旋转中心点,通常是图片的中心点。 3. 定义旋转角度。 4. 定义缩放因子,通常是1。 5. 使用 `getRotationMatrix2D` 函数获取旋转矩阵。 6. 使用 `warpAffine` 函数应用旋转矩阵到图像上。 7. 使用 `cv2.imshow` 函数显示旋转后的图像。 8. 使用 `cv2.waitKey` 函数等待按键操作。 9. 使用 `cv2.destroyAllWindows` 函数关闭窗口。 下面是一个示例代码: ``` import cv2 import numpy as np # 读取图像 image = cv2.imread('image.jpg') # 定义旋转中心 center = (image.shape[1] // 2, image.shape[0] // 2) # 定义旋转角度 angle = 45 # 定义缩放因子 scale = 1 # 获取旋转矩阵 rotationMatrix = cv2.getRotationMatrix2D(center, angle, scale) # 应用旋转矩阵到图像上 rotatedImage = cv2.warpAffine(image, rotationMatrix, (image.shape[1], image.shape[0])) # 显示旋转后的图像 cv2.imshow('Rotated Image', rotatedImage) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上代码中,我们将图像顺时针旋转45度,并显示旋转后的图像。你可以根据具体需修改旋转角度和图像路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值