教师资格证的试讲题目,是随机在题库中进行抽取,基本上初中阶段的每一节课,都是有可能被你抽到的。而初中的课一共有88节左右(用小节统计的话,这个数字至少还要乘以2),我们如果每一篇都在考前练一练,有些太花时间了。所以相对比较有效的方法,是我们去准备一些“重点篇目”。
这里说的重点,不是指它被抽取的概率大,而在它所代表的这种课型在中学阶段所占篇目多。我们可以在一节重点课的组织练习中,熟悉这类课型的讲课思路,从而达到熟悉多节课的效果。
我大致把初中的课型分为六类(这里不是按课标分的,只是按内容逻辑的相似度),并给出了重点篇目,大家在备考时可以作为参考,应该能有一些帮助。
一、概念类
代表篇目:反比例函数
这一类型的课是初中课本中占比最大的一部分,包括整式、一元一次方程、二元一次方程组、一元二次方程、正比例函数、一次函数、函数、二次函数等等。大致思路都是由实际例子引出,然后抽象给出概念。将这类课主要注意两点①是把概念中学生不容易理解、或容易出错的点讲出来,(比如反比例函数中的k的值,x的取值范围,但要注意初中不能说定义域。)②关于例子的引出方式和策略。书上一般会给至少三个例子,正常讲时间一般是不够的,所以可以在考前设计一个适合自己的,这类课型中例子的引入方式。这里反比例函数是一个不错的练习篇目。
二、计算类
代表篇目:因式分解(提公因式法、公式法)
计算类型的课在初中教材中同样有很多,比如有理数的加减法、乘除法、乘方;整式的加减、整式的乘法;消元——解二元一次方程组;乘法公式;分式的运算;二次根式的加减、乘除等等。讲课思路其实就找规律,总结规律。讲这类课容易出彩的点,在于题目的选取和讲解,通过题目难度的逐步加深,来加深对运算律、运算方法的掌握和运用。这里练习的课我选择了因式分解,因为其它的都更简单。
三、实际问题类
代表篇目:实际问题与二次函数
这种类型的课包括实际问题与一元一次方程、坐标方法的简单应用、实际问题与二元一次方程组、实际问题与一元二次方程、实际问题与反比例函数等。这里选实际问题与二次函数,也是因为是相对来说最难讲的一课。
四、几何图形概念类
代表篇目:矩形
这类型课其实和第一类概念课是差不多的,不过叙述语言上会有所不同,对一些人而言,几何语言可能叙述不太习惯,所以这种也可以练一两篇。这种类型的有几何图形、直线、射线、线段、角、相交线、平移、多边形及其内角和、全等三角形、轴对称图形等等。这里选矩形,是因为这节课中有概念还有性质,练得会全面一些。平行四边形的性质,菱形也行。
五、探究类
代表篇目:全等三角形的判定,勾股定理
这类课有全等三角形的判定,角的平分线的性质、线段的垂直平分线的性质、勾股定理、勾股定理的逆定理、二次函数与一元二次方程、相似三角形(判定、性质、应用举例)等等。这种课的思路大致是带着学生一起去猜想、去验证。这里在全等三角形的判定基础上,又加了一个勾股定理。这是因为勾股定理这节课,里面有一个图形证明,如果突然遇到,比较容易看不明白,提前在考前看一下踏实一些。
六、作图类
代表篇目:二次函数的图像和性质
一次函数的图像和性质、二次函数的图像和性质、反比例函数的图像和性质,画轴对称图形三视图等等。同样是以防画图的语言临时组织不好,在考前可以准备一下。
注:
1.这里给的题目,是以人教版教材给出的,因为中小学教师资格各学科面试大纲里的举例说明,举得人教版的例子。而且据我了解的情况,大部分地区也是人教版。但有没有一些地区比较特殊,我也不太清楚。
2.这里化为5类,基本涵盖了所有的课类,但还是有一些课比较特殊,比方说制作立体模型、统计调查、从数据谈节水等,一般没听到有人抽到这种,但万一…。