要带本科毕设嘛,所以对这个要多少了解一下,然后就搜索了一下,之前搜索过一次,没发现什么啊,这次一搜索发现不错的东西,特此记录,主要是转载。
以下内容转载自CVPR 2019轨迹预测竞赛冠军方法总结
赛题简介
轨迹预测竞赛数据来源于在北京搜集的包含复杂交通灯和路况的真实道路数据,用于竞赛的标注数据是基于摄像头数据和雷达数据人工标注而来,其中包含各种车辆、行人、自行车等机动车和非机动车。
训练数据:每个道路数据文件包含一分钟的障碍物数据,采样频率为每秒2赫兹,每行标注数据包含障碍物的ID、类别、位置、大小、朝向信息。
测试数据:每个道路数据文件包含3秒的障碍物数据,采样频率为每秒2赫兹,目标是预测未来3秒的障碍物位置。
评价指标
平均位移误差:Average displacement error(ADE),每个预测位置和每个真值位置之间的平均欧式距离差值。
终点位移误差:Final displacement error(FDE),终点预测位置和终点真值位置之间的平均欧式距离差值。
由于该数据集包含不同类型的障碍物轨迹数据,所以采用根据类别加权求和的指标来进行评价。