轨迹信息可以进行数据增强吗??_轨迹预测

本文记录了CVPR 2019轨迹预测竞赛冠军方法,分析了数据完整性、朝向信息、数据增强及模型结构。采用独立预测模型,通过数据插值、旋转、反向和噪声处理增强数据,利用LSTM Encoder-Decoder结构预测轨迹。实验结果显示,该方法在轨迹预测挑战赛中取得了优秀成绩,但认为基于交互的方法仍有潜力。
摘要由CSDN通过智能技术生成

要带本科毕设嘛,所以对这个要多少了解一下,然后就搜索了一下,之前搜索过一次,没发现什么啊,这次一搜索发现不错的东西,特此记录,主要是转载。


以下内容转载自CVPR 2019轨迹预测竞赛冠军方法总结

赛题简介

轨迹预测竞赛数据来源于在北京搜集的包含复杂交通灯和路况的真实道路数据,用于竞赛的标注数据是基于摄像头数据和雷达数据人工标注而来,其中包含各种车辆、行人、自行车等机动车和非机动车。

训练数据:每个道路数据文件包含一分钟的障碍物数据,采样频率为每秒2赫兹,每行标注数据包含障碍物的ID、类别、位置、大小、朝向信息。

测试数据:每个道路数据文件包含3秒的障碍物数据,采样频率为每秒2赫兹,目标是预测未来3秒的障碍物位置。

评价指标

平均位移误差:Average displacement error(ADE),每个预测位置和每个真值位置之间的平均欧式距离差值。

终点位移误差:Final displacement error(FDE),终点预测位置和终点真值位置之间的平均欧式距离差值。

由于该数据集包含不同类型的障碍物轨迹数据,所以采用根据类别加权求和的指标来进行评价。

6ecd50c6b7cdff357c743ca2e5ef7918.png

现有方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值