论文笔记:L2MM: Learning to Map Matching with Deep Models for Low-Quality GPS Trajectory Data

2023 TKDD

1 intro

  • 原始的GPS轨迹数据通常会面临3个问题:
    • 噪声
      • 城市中的高楼会挡住一些GPS信号,导致GPS位置异常
    • 低频
      • 有限的带宽和信号能量导致GPS信号采样频率较低
    • 不均匀分布/采样
      • 不同的GPS设备会导致不同的采样间隔
    • ——》对于这种质量较差的轨迹数据,地图匹配变得困难
  • 论文提出了L2MM(learning to map matching),主要是有以下三个观测motivate的
    • 随着采样时间间隔的增加,大多数现有的地图匹配算法匹配精度显著降低
      • ——>增强低频轨迹的表示能力
      • ——>希望将高频轨迹的丰富空间信息嵌入到低频轨迹的表示中
      • 采用了seq2seq模型来学习低质量轨迹的嵌入表示
        • ——>表示向量能够同时包含低频轨迹的特征和高频轨迹的特征,从而增强其表示能力
      • 首篇通过增强轨迹表示的能力来提高地图匹配性能
    • 基于学习的模型的匹配精度对训练数据量非常敏感
      • ——>改进轨迹表示的泛化能力
      • 受VAE的启发,论文对潜在空间中的表示分布进行规范化,以增强泛化能力
      • ——>轨迹表示的分布可以更加简明和规则,可能有助于不常见轨迹的地图匹配
      • ——>使用有限的轨迹数据来训练模型,而不会严重降低模型性能
    • 从真实驾驶场景中提取的移动模式和用户偏好可以改善匹配结果
      • 例如,驾驶员更喜欢拐弯和掉头较少的主干道
      • ——>首先在潜在空间中揭示了历史轨迹中隐藏的典型移动模式
      • ——>通过联合优化方案,将它们作为知识整合到地图匹配中
      • 第一个这么做 用于地图匹配的

2 related works

2.1 地图匹配

  • 传统基于模型的地图匹配算法可以进一步分为几类
    • 一些方法利用各种信息,如时空特征、行进方向、移动速度、轨迹相似性、驾驶行为,来寻找正确的路径
      • HMM及其变体使用得比较多
        • ——>  人类移动是非马尔科夫的
        • ——>在道路网络上进行路径搜索是很昂贵的
        • TrajCompressor: An online mapmatching-based trajectory compression framework leveraging vehicle heading direction and change 2020
          Hidden markov map matching based on trajectory segmentation with heading homogeneity 2021
          Online map-matching of noisy and sparse location data with hidden markov and route choice models. 2017
          Accurate real-time map matching for challenging environments 2017
          Hidden markov map matching through noise and sparseness 2009
          Eddy: An error-bounded delay-bounded real-time map matching algorithm using HMM and online viterbi decoder. 2014
          Fast map matching, an algorithm integrating hidden markov model with precomputation 2018
    • 一些方法利用额外的数据来提高匹配精度
      • 在历史GPS轨迹中识别出的频繁移动模式,用于改善匹配性能
    • ——>由于许多因素,例如预定义模型的假设、数据采样的频率以及道路网络的复杂性,这些基于模型的算法的性能通常令人不满意
  • 基于learning的方法
    • KNN
      • Reusability of the output of map-matching algorithms across space and time through machine learning. 2017
    • ANN 
      • Development and application of an enhanced kalman filter and global positioning system error-correction approach for improved map-matching. 2010
    • RL 
      • DMM: Fast map matching for cellular data. 2020
      • Increasing GPS localization accuracy with reinforcement learning 2021
    • DeepMM
      • 基于seq2seq学习框架
      • 通过大量的历史轨迹学习了从轨迹到相应驾驶路径的映射函数
      • 基本流程:
        • 将原始的低频轨迹转化为潜在表示向量
        • 然后将向量投影到真实的轨迹上
        • 由于数据集过小,无法训练模型,因此提出了两种数据增强方法来丰富训练数据集
      • 如果轨迹的质量较差(噪声较多),DeepMM只是将原始轨迹编码为表示向量,导致轨迹表示的质量较差
      • 如果没有足够的训练数据,它无法达到良好的性能
      • DeepMM: Deep learning based map matching with data augmentation 2022
    • 地图匹配综述
      • A survey on map-matching algorithms. 2020
      • A critical review of real-time map-matching algorithms: Current issues and future directions 2014
      • Comparative study and applicationoriented classification of vehicular map-matching methods 2018
      • Current map-matching algorithms for transport applications: State-of-the art and future research directions. 2007

2.2 轨迹表征

  • 将轨迹的空间和结构信息嵌入到潜在空间中的高层次、低维度向量
  • 在基于深度学习的许多轨迹挖掘任务中起着重要作用
    • 轨迹相似度计算
      • Deep representation learning for trajectory similarity computation ICDE 2018
      • T3S: Effective representation learning for trajectory similarity computation ICDE 2021
    • 人类移动预测
      • Predicting the next location: A recurrent model with spatial and temporal contexts 2016 aaai
      • Context-aware variational trajectory encoding and human mobility inference 2019 www
    • 出行方式检测
      • Travel mode identification with GPS trajectories using wavelet transform and deep learning. 2021
      • TrajectoryNet: An embedded GPS trajectory representation for point-based classification using recurrent neural networks. 2017
    • 驾驶风格识别
      • semi-Traj2Graph: Identifying finegrained driving style with GPS trajectory data via multi-task learning 2021
  • 低频轨迹中信息有限,传统的轨迹学习方法生成的表示向量在语义上存在歧义,导致地图匹配性能较差
    • ——>论文增强轨迹表示能力,以提高低频轨迹的匹配精度4

2.3 融合移动模式

  • TrajCompressor: An online mapmatching-based trajectory compression framework leveraging vehicle heading direction and change 2020 利用人们在交叉口倾向于直行的观点来压缩轨迹
  • Online anomalous trajectory detection with deep generative sequence modeling. 2020ICDE识别了主要的移动模式来检测异常轨迹
  • Map matching with inverse reinforcement learning. 2013 IJCAI利用逆强化学习来学习道路段之间的转换模式,并进一步估计地图匹配算法的参数
  • DeepMM: Deep learning based map matching with data augmentation. 2022 应用seq2seq模型进行地图匹配,其中训练轨迹和对应路径中嵌入的移动模式被隐式地利用来支持新轨迹的匹配
  • DMM: Fast map matching for cellular data 直接使用高级移动模式知识(例如,人们倾向于选择主干道)来优化地图匹配结果

3 Preliminary

3.1 定义

基于点的轨迹

T^P=\{p_1,p_2,\cdots,p_n\}

每个pi点表示一个GPS点,其中p_i=\{lat_i,lon_i,t_i\}表示经纬度和时间

采样间隔Δt不一定恒定,以30s的采样间隔为界,分为低采样率T^{P^L}和高采样率T^{P^H}

基于网格的轨迹

T^G=\{g_1,g_2,\cdots,g_n\}

基于网格的轨迹对GPS信号导致的位置噪声更鲁棒

路网G=(N,E),OpenStreetMap
基于路段的轨迹

T^S=\{e_1,e_2,\cdots,e_m\}

e_i,e_{i+1}由一个路网中的点相连

3.2 基于深度学习的地图匹配

  • 基于深度学习的地图匹配是一个完完全全的data-driven问题
  • 旨在学习到一个mapping functionf:\{T^P\}\rightarrow \{T^S\}
    • 给定基于点的轨迹,得到基于路段的轨迹
    • ground truth的获取是开销是很大的
  • 为了减少GPS设备导致的空间噪声,将Tp映射到TG中,也即学习f:\{T^G\} \rightarrow \{T^S\}

3.3 L2MM

4 设计细节

4.1 轨迹表示学习和增强

4.1.1 轨迹表示的两个问题

    • 轨迹中的不确定性(noise)导致了模糊的语义表示,削弱了潜在向量的表达能力
    • 有限的轨迹数据规模降低了潜在表示的泛化能力

4.1.2 解决方法

  • 使用高频率轨迹进行增强
    • 在相同路径上的车辆运动可以以不同的采样率记录,生成低频率和高频率的基于点的轨迹
      • 融合相应高频率轨迹的丰富信息来增强低频率轨迹的潜在表示
      • 使用seq2seq模型自动学习高质量的轨迹表示

  •  使用数据分布进行增强
    • 由于采样的复杂性,训练数据是很少的
    • 之前的工作很多是进行数据增强,以获得更多的训练数据
    • 这里通过使用隐藏空间表示向量的分布来增强轨迹表示

  • 经过之前Seq2seq模型后,低频轨迹被编码成固定维度的内容向量z
    • 由于训练轨迹的数量有限,它们在高维空间中分布稀疏
    • 与此同时,从直观上讲,这些点的分布应该具有一定的规律性:
      • 相似的轨迹输入应该被编码为相邻的隐藏空间中的点
      • 解码为相同基于路段的轨迹的点,应该在隐藏空间中尽可能靠近
    • ——>收到VAE的启发,相似点的分布满足高斯分布(用KL分布来进行约束)
      • 不同z的数据分布是根据后验分布推断而来的

【个人感觉就是在encoder和decoder之间再加一个这个结构,更新轨迹表征】

 4.2 模式识别和表征

  • 轨迹表征作为地图匹配任务的一个独立task
  • 假设在轨迹数据中存在K个隐藏的模式(pattern),那么在潜在空间中就有K个对应的群组
    • q_\alpha(c|T^G)=p_\beta(c|z)
      • ——>使用高斯混合模型来建模 隐藏空间中的表征分布

     

4.3 轨迹匹配

  • 将轨迹表征decode,将解码后的向量匹配到基于路段的轨迹上
  • P_\theta(T^S|z),T^S=\{e_1,\cdots,e_m\}表示生成的基于路段的轨迹,θ是decoder的参数

 4.4 L2MM的联合训练

5 实验

5.1 实验配置

5.1.1 实验数据

  • 波尔图数据集

    • 442辆出租车从2013年7月1日至2014年6月30日生成的超过172万条轨迹。

    • 随机选择约20万条轨迹,范围限定在经度[-8.65, 41.17]纬度[-8.58, 41.14]的方形区域内。

    • 平均定位误差7.8米

  • 重庆数据集

    • 2017年3月份重庆市超过12,000辆出租车生成的轨迹。

    • 从经度[106.47, 29.59]纬度[106.55, 29.62]的方形区域内,随机选择了约10万条轨迹。统

    • 平均定位误差为26.7米。

  •  人工数据集

    • 不同噪声下的性能:重庆数据集的平均定位误差高于波尔图数据集——>利用这两个数据集来评估L2MM在不同噪声水平下的性能。。

    • 低频轨迹数据集:对原始数据集进行均匀采样生成

    • 非均匀轨迹数据集:对波尔图的原始数据集进行非均匀子采样生成

 

  • 路网情况:OpenStreetMap

  • Ground-Truth

    • 使用HMMM地图匹配算法将高频率轨迹(即采样间隔为15秒)映射到道路网络上。将匹配结果作为ground-truth。

5.1.2 衡量标准

准确度:

 效率(平均每条轨迹的匹配时间)

 

5.2 效果

5.3 Case Study

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值