POJ3070-Fibonacci(矩阵快速幂)

POJ3070 -Fibonacci

解题思路:
这题的题述是求斐波那契数列的第n个数取模,同时在题干中附上了斐波那契数列的使用矩阵乘的求法。在花了两个小时看懂矩阵乘之后我感觉既然矩阵乘和普通乘法没有本质上的区别,那么应该可以将快速幂的方法应用到矩阵乘中。

AC代码:

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

struct matrix{
long long a[2][2];
};
matrix c;
void mul(matrix a,matrix b){
int i,j;
for(i=0;i<2;i++)
    for(j=0;j<2;j++)
        c.a[i][j]=(a.a[i][0]*b.a[0][j]+a.a[i][1]*b.a[1][j])%10000;
}

int main()
{
    matrix ans,fib;
    long long n,i,j;
    while(scanf("%lld",&n)!=EOF&&n!=-1){
    ans.a[0][0]=1;
    ans.a[0][1]=1;
    ans.a[1][0]=1;
    ans.a[1][1]=0;
    fib.a[0][0]=1;
    fib.a[0][1]=0;
    fib.a[1][0]=0;
    fib.a[1][1]=1;
    if(n==0) printf("0\n");
    else{
    n--;
    while(n>0){
        if(n%2){
        mul(ans,fib);
        fib.a[0][0]=c.a[0][0];
        fib.a[0][1]=c.a[0][1];
        fib.a[1][0]=c.a[1][0];
        fib.a[1][1]=c.a[1][1];
        }
        mul(ans,ans);
        ans.a[0][0]=c.a[0][0];
        ans.a[0][1]=c.a[0][1];
        ans.a[1][0]=c.a[1][0];
        ans.a[1][1]=c.a[1][1];
        n>>=1;
    }
    printf("%lld\n",fib.a[0][0]);
    }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值