高中函数概念的教学思路

一、关于函数的概念:

函数的概念有两个,其一为初中的定义,称为传统定义,其二为高中的定义,称为近代定义。

传统定义:设在某变化过程中有两个变量\(x\)\(y\),如果对于\(x\)在某一范围内的每一个确定的值,\(y\)都有唯一确定的值与它对应,那么就称\(y\)\(x\)的函数,\(x\)叫做自变量。我们将自变量\(x\)取值的集合叫做函数的定义域,和自变量\(x\)对应的\(y\)的值叫做函数值,函数值的集合叫做函数的值域。

近代定义:设\(A\)\(B\)都是非空的数集,\(f:x→y\)是从\(A\)\(B\)的一个对应法则,那么从\(A\)\(B\)的映射\(f:A→B\)就叫做函数,记作\(y=f(x)\),其中\(x∈A\)\(y∈B\),原象集合\(A\)叫做函数\(f(x)\)的定义域,象集合\(C\)叫做函数\(f(x)\)的值域,显然有\(C\subseteq B\)

  • 对函数概念的理解

函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。

二、基于对应基础的函数概念的理解(近代定义)

(1)首先需要先搞清楚对应的概念,

关于对应的概念,我们基于蜜蜂采蜜的生活常识来理解,可以一只蜜蜂采一朵花(称为“一对一”的对应),

可以一只蜜蜂采多朵花(称为“一对多”的对应),还可以多只蜜蜂采一朵花(称为“多对一”的对应)

即对应有一对一,一对多和多对一三种对应关系。

992978-20180927172913419-1515905525.png

(2)映射

能够称为映射的对应只有一对一和多对一两种,其中一对多不能称为映射,

映射\(f:A\rightarrow B\)和映射\(f:B\rightarrow A\)是不一样的。

集合\(A,B\)不一定是数集,可以是图形集,式集,点集,向量集等,

(3)函数

非空数集\(A\)到非空数集\(B\)的映射\(f:A\rightarrow B\)就称为函数,记为\(y=f(x)\)

  • 符号\(y=f(x)\)即是“\(y\)\(x\)的函数”的数学表示,

应理解为:\(x\)是自变量,它是法则所施加的对象;\(f\)是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;

\(y\)是自变量的函数,当\(x\)为允许的某一具体值时,相应的\(y\)值为与该自变量值对应的函数值,

\(f\)用解析式表示时,则解析式为函数解析式。\(y=f(x)\)仅仅是函数符号,不是表示“\(y\)等于\(f\)\(x\)的乘积”,

\(f(x)\)也不一定是解析式,在研究函数时,除用符号\(f(x)\)外,还常用\(g(x)\)\(F(x)\)\(G(x)\)等符号来表示。

(4)映射与函数的关系:

由关系图可以看出,函数是映射的特殊情况,映射是函数的拓展和推广。

三、典例赏析:

例1【映射个数和函数个数模型】

给定集合\(A=\{1,2,3\}\),集合\(B=\{a,b,c,d\}\) ,求映射\(f:A \rightarrow B\)的个数和映射\(f:B \rightarrow A\)的个数。

分析:依据映射的概念,映射\(f:A \rightarrow B\)需要给集合\(A\)中的每一个元素(原像),都找一个确定的对应对象(像)。

此时注意,原像必须有与之对应的唯一的像,但是像不一定必须有原像和她对应。

我们分步完成:先给元素\(1\)分配对象,每次取一个有\(a、b、c、d\)四种选择;

再给元素\(2\)分配对象,每次取一个也有\(a、b、c、d\)四种选择;

最后给元素\(3\)分配对象,每次取一个也有\(a、b、c、d\)四种选择,

允许出现元素\(1、2、3\)都对应到元素\(a\)上而其他元素没有原像与之对应的情形出现;

利用乘法原理,映射\(f:A \rightarrow B\)共有\(4\times 4\times4=4^3\)个,即\((cardB)^{cardA}\)个。

同理,映射\(f:B \rightarrow A\)共有\(3^4\)个,即\((cardA)^{cardB}\)个。

【引申】:若集合\(B\)为数集,则能构成的函数\(f:A \rightarrow B\)共有\(4\times 4\times4=4^3\)个,

能构成的函数\(f:B \rightarrow A\)共有\(3^4\)个,若集合\(B\)不为数集,则所求的函数个数都是\(0\)个。

原因是:函数是非空数集到非空数集的映射。

例2【映射个数和函数个数模型】

给定集合\(A=\{1,2,3\}\),集合\(B=\{a,b,c\}\) ,求一一映射\(f:A \rightarrow B\)的个数和一一映射\(f:B \rightarrow A\)的个数。

先分析一一映射\(f:A \rightarrow B\)的个数,由于是一一映射,类似有3人坐3个凳子,故有\(A_3^3=6\)个。

同理,一一映射\(f:B \rightarrow A\)的个数也是\(6\)种。

转载于:https://www.cnblogs.com/wanghai0666/p/9714078.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值