基于N-Gram判断句子是否通顺

本文介绍了一个基于N-Gram和深度学习判断句子是否通顺的任务。作者首先尝试了基于词性的N-Gram方法,通过计算词性的频度来判断句子的通顺性,然后探讨了使用BERT进行句法特征学习但效果不佳的情况。文章讨论了性能分析、遇到的问题及解决方案,并提出了未来改进的方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完整代码实现及训练与测试数据:click me

一、任务描述

        自然语言通顺与否的判定,即给定一个句子,要求判定所给的句子是否通顺。

二、问题探索与分析

        拿到这个问题便开始思索用什么方法来解决比较合适。在看了一些错误的句子之后,给我的第一直觉就是某些类型的词不应该拼接在一起,比如动词接动词(e.g.我打开听见)这种情况基本不会出现在我们的用语中。于是就有了第一个idea基于规则来解决这个问题。但是发现很难建立完善的语言规则也缺乏相关的语言学知识,实现这么完整的一套规则也不简单,因此就放弃了基于规则来实现,但还是想抓住某些类型的词互斥的特性,就想到了N-Gram,但是这里的N-Gram不是基于词来做,而是基于词的词性来做。基于词来做参数量巨大,需要非常完善且高质量的语料库,而词的词性种类数目很小,基于词性来做就不会有基于词的困扰,而且基于词性来做直觉上更能贴合想到的这个idea。除了这个naive的idea之外,后面还有尝试用深度学习来学习句子通顺与否的特征,但是难点在于特征工程怎么做才能学习到句子不通顺的特征。下面我会详细说明我的具体实现。

三、代码设计与实现

3.1 基于词性的N-Gram

环境:

  1. python 3.6.7

  2. pyltp 0.2.1(匹配的ltp mode 3.4.0)
  3. numpy 1.15.4

  • pyltp用于分词和词性标注,首先加载分词和词性标注模型

    from pyltp import Segmentor
    from pyltp import Postagger
    
    seg = Segmentor()
    seg.load(os.path.join('../input/ltp_data_v3.4.0', 'cws.model'))
    pos = Postagger()
    pos.load(os.path.join('../input/ltp_data_v3.4.0', 'pos.model'))
  • 加载训练数据,并对数据进行分词和词性标注,在句首句尾分别加上<s>和</s>作为句子开始和结束的标记

    train_sent = []
    trainid = []
    train_sent_map = {}  #[id:[ngram value, label]]
    with open('../input/train.txt', 'r') as trainf:
        for line in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值