完整代码实现及训练与测试数据:click me
一、任务描述
自然语言通顺与否的判定,即给定一个句子,要求判定所给的句子是否通顺。
二、问题探索与分析
拿到这个问题便开始思索用什么方法来解决比较合适。在看了一些错误的句子之后,给我的第一直觉就是某些类型的词不应该拼接在一起,比如动词接动词(e.g.我打开听见)这种情况基本不会出现在我们的用语中。于是就有了第一个idea基于规则来解决这个问题。但是发现很难建立完善的语言规则也缺乏相关的语言学知识,实现这么完整的一套规则也不简单,因此就放弃了基于规则来实现,但还是想抓住某些类型的词互斥的特性,就想到了N-Gram,但是这里的N-Gram不是基于词来做,而是基于词的词性来做。基于词来做参数量巨大,需要非常完善且高质量的语料库,而词的词性种类数目很小,基于词性来做就不会有基于词的困扰,而且基于词性来做直觉上更能贴合想到的这个idea。除了这个naive的idea之外,后面还有尝试用深度学习来学习句子通顺与否的特征,但是难点在于特征工程怎么做才能学习到句子不通顺的特征。下面我会详细说明我的具体实现。
三、代码设计与实现
3.1 基于词性的N-Gram
环境:
python 3.6.7
- pyltp 0.2.1(匹配的ltp mode 3.4.0)
numpy 1.15.4
pyltp用于分词和词性标注,首先加载分词和词性标注模型
from pyltp import Segmentor from pyltp import Postagger seg = Segmentor() seg.load(os.path.join('../input/ltp_data_v3.4.0', 'cws.model')) pos = Postagger() pos.load(os.path.join('../input/ltp_data_v3.4.0', 'pos.model'))
加载训练数据,并对数据进行分词和词性标注,在句首句尾分别加上<s>和</s>作为句子开始和结束的标记
train_sent = [] trainid = [] train_sent_map = {} #[id:[ngram value, label]] with open('../input/train.txt', 'r') as trainf: for line in