matplotlib basic and boxplot

如果需要考虑绘图性能开销的话, 可以考虑PyQtGraph (http://www.pyqtgraph.org/), 比matplotlib更高效, 适用于开发实时更新数据的图表,如Tick图、K线图、期权波动率曲线. 

============================================
matplotlib 绘图基础
============================================
绘图: matplotlib核心剖析
http://www.cnblogs.com/vamei/archive/2013/01/30/2879700.html

Python图表绘制:matplotlib绘图库入门
http://www.cnblogs.com/wei-li/archive/2012/05/23/2506940.html

Matplotlib Tutorial(译)
http://reverland.org/python/2012/09/07/matplotlib-tutorial/

Basic Use of Matplotlib
这个文章比较多地讲述了marker style和线型设置
http://pythonshell.github.io/python/2013/11/05/Basic-Use-of-Matplotlib/

matplotlib-绘制精美的图表 (HYRY Studio 出品)
http://old.sebug.net/paper/books/scipydoc/matplotlib_intro.html

坐标系的种类:
axis coords (0,0 is lower-left and 1,1 is upper-right)
data coords, data 值的坐标系
figure coords,   
 
============================================
boxplot 绘图
============================================
理解统计学上的boxplot
http://bagrow.com/dsv/LEC07_notes_2014-02-04.html
http://stackoverflow.com/questions/17725927/boxplots-in-matplotlib-markers-and-outliers
 
理解matplotlib的boxplot
http://blog.bharatbhole.com/creating-boxplots-with-matplotlib/
这篇文章对我的帮助太大了, 它以step by step的方式, 告诉我们如何调教matplotlib绘制boxplot图.


============================================
我的笔记
============================================
matplotlib中boxplot常用的术语:
    whiskers, 是指从box 到error bar之间的竖线
    fliers, 是指error bar线之外的离散点. 维基上的叫法是 Outliers
    caps, 是指error bar横线
    boxes, Q1 和 Q3组成的box, 即25分位和75分位.
    medians, 是中位值的横线.
    means, 是avg的横线.

ax.boxplot() 函数参数:
  -参数x: data的输入, 格式是: 由vector组成的一个list
  -参数whis: 用来确定 error bar的位置,  上面的那条error bar的位置等于: Q3 + whis*IQR, 下面的那条error bar的位置等于 Q1-whis*IQR, 其中IQR = interquartile range 即 Q3-Q1, whis缺省值为1.5.
   -绘图风格参数, 这些参数有: boxprops,flierprops, medianprops, meanprops,capprops,whiskerprops属性.
    每个绘图风格属性都是dict对象, 下面是一个比较完整属性设定,
    dict(linestyle='solid', color='blue', linewidth=1, marker='o', markerfacecolor='red', markeredgecolor='black', markeredgewidth=3, markersize=12)

 

matplotlib 在画boxplot时候, 先对原始数值序列X, 使用cbook.boxplot_stats()来求得median/q1/q3等值, 然后根据这些统计值来绘图. 如果我们对boxplot上的各个坐标存疑, 也可以手工调用 my_bxpstats=cbook.boxplot_stats()来验证这些统计值是否合理. my_bxpstats的属性有:
    med: 中位值.
    q1: box的下边界, 即25分位值.
    q3: box的上边界, 即75分位值.
    whislo: 下面的那条error bar值.
    whishi: 上面的那条error bar值.


有时候单纯ax.boxplot()函数不能满足需求, 比如我们需要将各个box的avg点连起来. 这时候我们可以通过boxplot()函数的返回对象, 获取各个绘图元素对象, 有了这些基本绘图对象, 即可画出我们自定义的绘图元素.  下面以bp作为boxplot()返回对象.
bp的基本绘图元素有:
    boxes, 是25分位值和75分位值构成的box, 每个box是一个PathPatch对象
    medians, 是中位值的横线, 每个median是一个Line2D对象
    whiskers, 是指从box 到error bar之间的竖线. 每个whisker是一个Line2D对象
    fliers, 是指error bar线之外的离散点. 每个flier是一个Line2D对象
    caps, 是指error bar横线. 每个cap是一个Line2D对象
    means, 是avg的横线, 每个mean是一个Line2D对象
    一旦能访问到这些Line2D对象, 就可以做更多的定制化了, 比如设置线性/颜色等, 因为有了位置信息, 甚至可以派生出其他Line2D对象. boxplot函数没有参数控制隐藏中位线, 如果我们需要隐藏, 可以将linewidth设为0


================
几点注意事项
================
##理解target_line, = ax.plot(x,y) 中的逗号
在matplotlib示例代码中, 我们经常看到将ax.plot()赋值给 "var," 这样的写法, 比如,
target_line, = ax.plot([0,  10 + 0.5], [10, 10], linestyle='-', color='red', linewidth=2, label='Target')
如果我们清楚ax.plot() 函数返回一个单元素的list, 上面的写法就很好理解了, 这其实就是一个unpack操作, 这之后target_line即是这个单元素.


##为ax上的多个绘图元素增加增加legend,                   
比如为boxplot和一条Line, 这里需要使用ax.legend()函数, 代码如下:
box = bp["boxes"][0]  # 获取箱线图中的第一个box, 作为legend标示的绘图对象.
ax.legend((box,target_line), ("Box plot","Target line"),
  fontsize=7, frameon=False,
  loc='upper left', bbox_to_anchor=(1.0, 1.0))

                  
##调整边框空白
通常如果一个fig上只有一个ax的话, 边框显得很宽, 默认边框约有0.1个axis坐标系单位, 需要手动调整一下.
ax = fig.add_subplot(1, 1, 1)
plt.subplots_adjust(left=0.03, right=0.94, bottom=0.14, top=0.93)


##设置背景色
#set ax background color
ax.set_axis_bgcolor('#D4D0C8')

#set fig background color
rect = fig.patch
rect.set_facecolor('#D4D0C8')

对应的savefig()时候, 需要指定facecolor, 否则图片上ax将带背景色, 而fig其他部分为白色.
fig.savefig(self.trend_chart_full_file, dpi=200, facecolor=fig.get_facecolor(), edgecolor='none')         

 

# 有时候matplotlib给出的默认的xtick数量很少, 而我们需要标注的xtick_labels又太多,  就需要调整major tick的数量.
# 如果major tick数量超1000的话, 还需要重置locator.MAXTICKS值.
main_plot, = ax.plot(data_to_plot, marker='s', markersize=3, color='green', linewidth=1)
ax.tick_params(labelsize=6)
value_count = len(data_to_plot)
if value_count < 1000:  # 1000 is the default tick.MAXTICKS
    ax.locator_params(axis='x', nbins=value_count)
else:
    x_locator = ax.xaxis.get_major_locator()
    x_locator.MAXTICKS = value_count + 5     # 手动调整 MAX ticks的数量, 否则matplot会抛异常
    ax.locator_params(axis='x', nbins=value_count)
ax.set_xticklabels(xtick_labels)

 

# xlabel太密集了, 坐标轴上的刻度文字会重叠的, 需要隔几个刻度显示一个刻度文字, 可以使用MultipleLocator, LinearLocator等, 但都很难用, 下面的代码很简单, 先全部隐藏, 然后将需要的刻度文字显示出来即可.
ticks_count = len(collectn_list)
ax.locator_params(axis='x', nbins=ticks_count) # set major ticks number
ticks_count_visible = 15  # show 15 ticks at most        
interval = int(ticks_count / ticks_count_visible) + 1
for label in ax.xaxis.get_ticklabels():
    label.set_visible(False)
for label in ax.xaxis.get_ticklabels()[0::interval]:
    label.set_visible(True)

 

#matplotlib 坑: ax.set_xticklabels() 函数有时候会报错, 猜测因为ticks太多, 需要catch一下.
    # noinspection PyBroadException
    try:
        ax.set_xticklabels(xtick_labels)
    except Exception as ex:
        self.logger.exception(ex)

   

 #matplotlib 坑:plt.clf() 有时候会报错, 简单封装一个clf_safely()函数
    @classmethod
    def clf_safely(cls):
        import matplotlib.pyplot as plt
        # noinspection PyBroadException
        try:
            plt.clf()  #
        except Exception as ex:
            cls.logger.exception(ex)        

                 
============================================
一个示例
============================================
下面代码是一个定制的boxplot, 定制点有:
1. 绿色的 avg line
2. 需要从最大值连一条线到box顶, 需要从最小值连一条线到box底
3. 画三条水平虚线, 分别是target/UCL/LCL

## numpy is used for creating fake data
import numpy as np
import matplotlib as mpl

## agg backend is used to create plot as a .png filempl.use('agg')  # must set before import matplotlib.pyplot 

import matplotlib.pyplot as plt

## 初始化raw data以及其他信息
collectn_list = []  # raw data
#xtick_labels = ['Sample%d'%i for i in range(len(collectn_list))]
#y_label ='y_label'
#title='title'
#target = 80.0
#ucl=110.0
#lcl=40.0
 
if not collectn_list:
    np.random.seed(10)
    collectn_1 = np.random.normal(100, 10, 20)
    collectn_2 = np.random.normal(80, 30, 20)
    collectn_3 = np.random.normal(90, 20, 20)
    collectn_4 = np.random.normal(70, 25, 20)
    ## combine these different collections into a list
    collectn_list =[collectn_1,collectn_2,collectn_3,collectn_4]
    
    xtick_labels = ['Sample%d'%i for i in range(len(collectn_list))]
    y_label ='y_label'
    title='title'
    target = 80.0
    ucl=110.0
    lcl=40.0    

 
data_to_plot = collectn_list

# Create a figure instance
plt.clf()
fig = plt.figure(figsize=(9, 6)) #设置长为9 inch, 宽为6 inch ax = fig.add_subplot(1,1,1) plt.subplots_adjust(left=0.03, right=0.93, bottom=0.15, top=0.93) # grid on ax.grid(True)

# set background color
ax.set_axis_bgcolor('#D4D0C8')
rect = fig.patch
rect.set_facecolor('#D4D0C8')

# avg line is in green meanprops=dict(linestyle='solid', color='green') # hide the default median line medianprops=dict(linestyle='solid', color='white') # Create the boxplot bp = ax.boxplot(data_to_plot, meanline=True, showmeans=True, meanprops=meanprops, medianprops=medianprops, showcaps=False) ## extra line from box top to max point, line from box bottom to min point # 注意几个坐标点的求值 for i, collectn in enumerate(collectn_list): percentile_25= np.percentile(collectn, 25, interpolation=b'linear') percentile_75= np.percentile(collectn, 75, interpolation=b'linear') y_max= max(collectn) y_min= min(collectn) medians_org = bp['medians'][i] medians_org_x=medians_org.get_xdata() # array([ 0.8875, 1.1125]) center_x = medians_org_x[0]+(medians_org_x[1]-medians_org_x[0])/2.0 ax.plot([center_x,center_x], [y_min,percentile_25], color='blue') ax.plot([center_x,center_x], [percentile_75,y_max], color='blue') ax.set_xticklabels(xtick_labels) ax.get_xaxis().tick_bottom() ax.get_yaxis().tick_left() ax.set_ylabel(y_label) ax.set_title(title) ## add target/UCL/LCL dash line # 注意横线的坐标求值, 和文本的坐标的求值 ax.plot([0,len(collectn_list)+0.5],[target,target], linestyle='--', color='blue', linewidth=1) ax.text(len(collectn_list)+0.5,target,"Tgt %.2f"%target,fontsize=10,horizontalalignment='right') ax.plot([0,len(collectn_list)+0.5],[ucl,ucl], linestyle='--', color='blue', linewidth=1) ax.text(len(collectn_list)+0.5,ucl,"UCL %.2f"%ucl,fontsize=10,horizontalalignment='right') ax.plot([0,len(collectn_list)+0.5],[lcl,lcl], linestyle='--', color='blue', linewidth=1) ax.text(len(collectn_list)+0.5,lcl,"LCL %.2f"%lcl,fontsize=10,horizontalalignment='right') fig.show()
plt.close(fig) # 调用plt.close()释放内存, plt.clf()并不会释放内存
 
 

 


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值