LPP(Locality Preserving Projection),局部保留投影.

本文介绍了监督学习降维算法LPP(Locality Preserving Projection),通过与PCA和LDA的对比,展示了LPP的实现步骤。LPP首先构造权重矩阵W,然后构建拉普拉斯矩阵L,并通过求解特征值问题降低数据维度。文中还给出了一个简单的实验案例来说明LPP的工作原理。
摘要由CSDN通过智能技术生成

   前几天学习了PCA,LDA算法,都是经典的降维算法。第一种为无监督学习,第二种为监督学习。

   今天看了另一种监督学习的降维算法LPP(Locality Preserving Projection),在此记录下自己的心得体会。

    就从算法的步骤上来说,LDA和LPP有着惊人的相似,以至于我怀疑他们之间只是同一种方法的不同表示。为了验证我的想法,我采用这两组算法对相同的数据进行降维,降维后的数据证明了我的想法是错的。但是降维后的数据确实非常的相近。还请各路大神指导两者之间的关系。

    LPP算法先需要用明确类别的样本进行训练。

    如有n个K维训练样本,X1,X2...Xn构成矩阵X,样本分为C种。我们需要先构造一个N*N的权重矩阵W.

    Wij的值对应样本Xi和样本Xj的关系。Wij有两种表示方法,我在此就介绍简单的一种,即当且仅当Xi和Xj是同一类的数据时,Wij为1,其余为0。这样我们就可以够着一个N*N的矩阵了。

     接着构造一个对角矩阵D,其中Dii等于W矩阵中第i行或者第i列的和(W为对称阵)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值