这篇文章主要的目的是在降低空间维度的同时,能较好的保持内部固定的局部结构,并且它对异化值(通常理解为错误的点,或者为污点)不敏感,这一点可以与主成分分析法(PCA)相区别。
对于高维的空间(x1,x2,x3、、、,xn)——属于S维空间,一般而言,我们需要选择一个降维矩阵A对X进行降维从而得到Y,其中Y=(y1,y2、、、,yn)——属于L维空间,其中L<<S,其表达式如下所示:
不多说,直接进入主题——
- 首先目标函数定义为 :
(1)
其中yi与yj代表降维之后的点,Wij是权重矩阵;
通过最小化上述目标函数,便达到降维目的。大家可