局部保留投影学习总结(LPP)

这篇文章主要的目的是在降低空间维度的同时,能较好的保持内部固定的局部结构,并且它对异化值(通常理解为错误的点,或者为污点)不敏感,这一点可以与主成分分析法(PCA)相区别。

对于高维的空间(x1,x2,x3、、、,xn)——属于S维空间,一般而言,我们需要选择一个降维矩阵A对X进行降维从而得到Y,其中Y=(y1,y2、、、,yn)——属于L维空间,其中L<<S,其表达式如下所示:

                                                                                    

不多说,直接进入主题——

  • 首先目标函数定义为  :   

                                                                                                                                        (1)

       其中yi与yj代表降维之后的点,Wij是权重矩阵;

通过最小化上述目标函数,便达到降维目的。大家可

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值