根据圆上三点求圆心及半径

Equation of a circle passing through 3 points (x1, y1) (x2, y2) and (x3, y3).

The equation of the circle is described by the equation:

Circle equation

After substituting the three given points which lies on the circle we get the set of equations that can be described by the determinant:

Circle equation

The coefficienta A, B, C and D can be found by solving the following determinants:

Circle equation
Circle equation
Circle equation
Circle equation

The values of A, B, C and D will be after solving the determinants:

Circle equation

Center point (x, y) and the radius of a circle passing through 3 points (x1, y1) (x2, y2) and (x3, y3) are:

Circle equation

Example: Find the equation of a circle passing through the points (⎯ 3, 4), (4, 5) and (1, ⎯ 4).

A = ⎯ 3(5 ⧾ 4) ⎯ 4(4 ⎯ 1) ⧾ 4(⎯ 4) ⎯ 1 • 5 = ⎯ 60

B = (9 ⧾ 16)(⎯ 4 ⎯ 5) ⧾ (16 ⧾ 25)(4 ⧾ 4) ⧾ (1 ⧾ 16)(5 ⎯ 4) = 120

C = (9 ⧾ 16)(4 ⎯ 1) ⧾ (16 ⧾ 25)(1 ⧾ 3) ⧾ (1 ⧾ 16)(⎯ 3 ⎯ 4) = 120

D = (9 ⧾ 16)(1 • 5 ⎯ 4(⎯ 4)) ⧾ (16 ⧾ 25)(⎯ 3 • (⎯ 4) ⎯ 1 · 4) ⧾ (1 ⧾ 16)(4 • 4 ⎯ (⎯ 3)5) = 1380

Divide all terms by ⎯ 60 to obtaine:

The center of the circle is by solving x and y is at point   (1, 1)

The radius of the circle is:

The

equation of the circle represented by standard form is:

以下是用 C++ 实现已知上三圆心半径的代码: ```cpp #include <iostream> #include <cmath> using namespace std; struct Point { double x, y; }; // 计算两之间的距离 double distance(Point p1, Point p2) { return sqrt(pow(p1.x - p2.x, 2) + pow(p1.y - p2.y, 2)); } // 已知上三圆心半径 void circleFromPoints(Point p1, Point p2, Point p3, Point& center, double& radius) { double a = distance(p1, p2); double b = distance(p2, p3); double c = distance(p3, p1); double s = (a + b + c) / 2; double area = sqrt(s * (s - a) * (s - b) * (s - c)); double A = asin((p2.y - p1.y) / a); double B = asin((p3.y - p1.y) / c); double x = area * (cos(A) + cos(B)) / (sin(A) + sin(B)) / 2 + p1.x; double y = (p2.y - p1.y) / (p2.x - p1.x) * (x - (p1.x + p2.x) / 2) + (p1.y + p2.y) / 2; center.x = x; center.y = y; radius = distance(center, p1); } int main() { Point p1 = { 0, 0 }; Point p2 = { 1, 1 }; Point p3 = { 2, 0 }; Point center; double radius; circleFromPoints(p1, p2, p3, center, radius); cout << "Center: (" << center.x << ", " << center.y << ")" << endl; cout << "Radius: " << radius << endl; return 0; } ``` 在本例中,我们定义了一个 `Point` 结构体来表示的坐标,并定义了一个 `distance` 函数来计算两之间的距离。`circleFromPoints` 函数接收三个作为参数,并计算出圆心半径,结果保存在 `center` 和 `radius` 变量中。主函数中调用 `circleFromPoints` 函数,并输出圆心半径的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值