梯度下降算法动图_从中学数学到AI算法01:切线、导数、偏导数、梯度、梯度下降算法...

本文介绍了从中学数学的切线、导数、偏导数概念,到大学的梯度及梯度下降算法,阐述了这些知识在人工智能中的应用。通过动图演示,解释了如何利用梯度下降优化模型的误差函数,以达到快速降低误差的目的。
摘要由CSDN通过智能技术生成

内容导读:切线、导数、偏导数、梯度、梯度下降算法,从中学、大学数学到人工智能,这些概念是一脉相承的。本文将这些知识进行大串联。

如果你是个中学生,读完本篇文章,你将会了解到,中学里学习的数学将来会在人工智能的哪些方面应用。如果你正在从事人工智能的学习研究,本文将有助于你系统地重温人工智能算法及其预备知识的前世今生。

(1)中学数学里的相切、切线、导数等概念。

曲线上某点A的切线是这样定义的:B是曲线上邻近A的点,以A为定点,当B点沿着曲线无限地接近A点时,割线AB的极限位置就是曲线在点A的切线,A点叫做切点。下面的GIF动画动态演示了这一过程。

1f425ada0b97e7f0857afa648c94e315.gif

我们可以绘制任意光滑曲线上的点的切线。下面几幅动图展示了圆、抛物线、正弦曲线、复合函数曲线上的切线。

88b8bb1e16bfc01b66121051f298fb8a.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值