偏差平方和说明什么_对偏差和方差的理解

本文深入探讨机器学习中的偏差和方差概念,特别是在神经网络模型中的表现。通过实例和图表,阐述了偏差(模型简单导致的欠拟合)和方差(模型复杂度过高导致的过拟合)的区别,提出了解决方案,包括增加模型复杂度、扩大数据集或应用正则化等策略。
摘要由CSDN通过智能技术生成

de8b468b9d341b14ab98424afa3ba7bd.png

刚开始学机器学习的时候一直对偏差和方差不怎么理解,今天就说道说道。这次我所说的模型都是神经网络,当然是不局限于神经网络的。在这里假定函数

是真实的的值,
是对
的估计。同样话不多说直接上图来说明问题,如下图所示:

3b3a834fe88f7d31537ff7d2cc166ca2.png

注意我这里的真实值和估计值跟图中的有所不一样,因为图中的符号不好写,知道是什么意思就行了。下面来解释下这张图。上图中蓝色的点就是我们估计的函数

。如果模型是一个神经网络的话,因为每一组参数就对应着一个
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值