双边功率谱密度和单边功率谱密度_功率谱密度(专业文章,勿膨者勿入)

本文详细介绍了功率谱密度(PSD)的概念,包括双边PSD、单边PSD以及它们在不同领域的应用。通过傅里叶变换、自相关函数与维纳-辛钦定理的关系,阐述了PSD在时域与频域间的转换,并讨论了在噪声分析、随机过程和振动研究中的应用。此外,还提到了相位功率谱密度与幅度功率谱密度的转换关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c93576caa4293ccc7b7517086bf18c66.png

来源:不忘初心的模拟小牛牛公众号

作者:131v1vv

在之前所发的 深入浅出聊抖动(Jitter)一文中我们着重学习了Jitter的时域相关内容,也遇到了很多各种各样的专业术语,有很多人被绕晕了。所以这里有必要再回顾一下频域相关的概念,算是一些补充知识吧。这期就围绕功率谱密度(Power Spectral Density,PSD)的概念展开。

先简单回忆一下图1中的任意实信号x(t),及其扩展函数,绝对值|x(t)|和平方x^2(t)。如果是个电压或电流信号,我们可以得到能量Energy和功率Power的相关定义。如任意时间段的总能量,瞬时功率,平均功率等。

cc62324d4984d0a18a2e636879bac3e4.png

图1

而x(t)存在傅里叶变换的充分条件为,x(t)满足绝对积分(absolute integratable)且有有限个间断点。在频域存在着等效的表达式X(jω)。同时包含着幅度谱和相位谱。即存在傅里叶变换对,满足时域和频域的相互转换,且二者是等价的。

在存在傅里叶变换的条件下,根据帕萨瓦尔(Parsev

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值