论文笔记:Generalized Intersection over Union

Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression

https://arxiv.org/abs/1902.09630

论文中通过提出一个新的损失函数来提升目标检测精度,思路比较新颖。

Motivation

IoU是目标检测中最常用的评估尺度,它是一种比值的概念,具有scale不敏感的特性。目前,检测任务通常都是采用回归损失(如MSE loss, smooth l1 loss)作为网络的目标函数,用IoU作为评估的尺度,但是这两者之间实际上是不等价的(如下图)。而且,\(L_n​\)也不是尺度不变的。通常来说,网络最好的目标函数就是尺度函数本身。但是直接使用IoU作为loss无法对不重叠的bounding box。论文中对使用IoU作为损失函数进行了探索,并提出了一种新的损失函数,GIoU。

IoU、GIoU和范数的关系

Generalized Intersection over Union

GIoU定义

IoU的计算公式如下:
\[ IoU=\frac{|A{\cap}B|}{|A{\cup}B|} \]
IoU主要有两种特性:

  • IoU可以作为距离
  • IoU具有尺度不变性

但是IoU的一个缺点在于,当\(A{\cap}B=0\)时,IoU=0。这个时候IoU并不能反映出两个图像是邻近还是相隔很远。

针对这个缺点,论文中提出GIoU,其计算方法如下:

  1. 对于任意两个凸多边形A和B,首先计算A和B的外包多边形C
  2. 计算C中出去A、B部分的剩下的面积占C的面积的比率
  3. GIoU的值为IoU减去这个比率

GIoU 算法

GIoU具有如下特性:

  • 与IoU类似,GIoU可以作为一种距离度量
  • 与IoU类似,GIoU具有尺度不变性
  • GIoU是IoU的一个下界,即\(GIoU(A, B) {\leq}IoU(A,B)\)
  • \(-1{\leq}GIoU(A, B) {\leq}1\)

GIoU作为边界框回归的损失函数

任意形状多边形的外包多边形不好求,但是在目标检测中,这个多边形是axis aligned的矩形,这使得计算GIoU变得非常容易。具体计算方法如下图:

IoU and GIoU as bounding box losses

实验结果

作者在VOC和COCO上分别采用Yolo V3和Faster RCNN算法进行了实验
Pascal VOC with yolo

Pascal VOC with yolo

1700099-20190530214241592-1272857700.png

MS COCO with yolo

1700099-20190530214258262-1242122776.png

Pascal VOC with Faster RCNN

1700099-20190530214316998-397919408.png

MS COCO with Faster RCNN

转载于:https://www.cnblogs.com/zjim/p/10951992.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值