等比数列的性质

本文详细探讨了等比数列的概念、性质、判定与证明方法,以及在运算中常用公式和变形技巧。从定义出发,阐述了等比中项、通项公式、前n项和公式,并通过实例解析了等比数列的判定、性质证明及变形应用。文章还介绍了等比数列在数列题目中的应用,包括等比数列的给出方式及求和计算中的项数计算方法,为理解和解决等比数列问题提供了全面指导。
摘要由CSDN通过智能技术生成

一、等比数列的相关概念:

  • 定义:自然语言略,符号语言:\(\cfrac{a_n}{a_{n-1}}=q\)\(n\ge 2\)\(n\in N^*\)\(q\)为常数。

  • 等比中项:如果三个实数\(a,G,b\)成等比数列,则\(G\)称为\(a,b\)的等比中项,满足\(G^2=ab\)

注意:必须\(ab>0\)才能保证\(G\)的存在性。

任意两个实数都有等差中项,但任意两个实数不一定都有等比中项。

  • 等比数列的通项公式:\(a_n=a_1\cdot q^{n-1}\),推广形式为\(a_n=a_m\cdot q^{n-m}\)

  • 等比数列的前\(n\)项和公式:\(S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right.\)

其中\(n\)为参与求和的项数,而不是最后一项的指数。是分段函数,当不知道\(q\)的值时,应该分类讨论。

二、等比数列的性质

  • ①在等比数列\(\{a_n\}\)中,若\(m+n=p+q=2k(m,n,p,q,k\in N^*)\),则\(a_m\cdot a_n=a_p\cdot a_q=a_k^2\)

  • ②若数列\(\{a_n\}\)\(\{b_n\}\)(项数相同)是等比数列,则\(\{\lambda a_n\}(\lambda\neq 0)\)\(\{\cfrac{1}{a_n}\}\)\(\{a_n^2\}\)\(\{a_n\cdot b_n\}\)\(\{\cfrac{a_n}{b_n}\}\)仍然是等比数列;

  • ③在等比数列\(\{a_n\}\)中,等距离取出若干项也构成一个等比数列,即\(a_n,a_{n+k},a_{n+2k},a_{n+3k},\cdots\)为等比数列,公比为\(q^k\)

  • ④公比\(q\neq -1\)的等比数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),则\(S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots ,\)仍成等比数列,其公比为\(q^n\),当公比\(q=-1\)时,\(S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots ,\)不一定成等比数列,若\(n\)为偶数,则其不能构成等比数列,若\(n\)为奇数,则可以构成等比数列。比如数列\(2,-2,2,-2,2,-2,\cdots,2,-2\)

  • \(q\neq 1\)的等比数列的前\(2n\)项,\(S_{偶}=\cfrac{a_2\cdot [1-(q^2)^n]}{1-q^2}\)\(S_{奇}=\cfrac{a_1\cdot [1-(q^2)^n]}{1-q^2}\),则\(\cfrac{S_{偶}}{S_{奇}}=q\)

  • ⑥等比数列的单调性,取决于两个参数\(a_1\)\(q\)的取值,\(a_n=a_1\cdot q^{n-1}\)

故当\(\left\{\begin{array}{l}{a_1>0}\\{q>1}\end{array}\right.\)\(\left\{\begin{array}{l}{a_1<0}\\{0<q<1}\end{array}\right.\)时,\(a_n\)单调递增;

\(\left\{\begin{array}{l}{a_1>0}\\{0<q<1}\end{array}\right.\)\(\left\{\begin{array}{l}{a_1<0}\\{q>1}\end{array}\right.\)时,\(a_n\)单调递减;

三、等比数列的判定与证明:

证明方法:

  • 定义法:\(\cfrac{a_n}{a_{n-1}}=q(n\ge 2)\),或者\(\cfrac{a_{n+1}}{a_n}=q(n\ge 1)\)

  • 等比中项法:\(a_{n+1}^2=a_n\cdot a_{n+2}(n\ge 1)\),或者\(a_n^2=a_{n+1

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
组合数乘等比数列求和是指在等比数列的每一项前面乘以一个对应的组合数然后求和。引用的内容提供了一些关于等比数列求和和组合数的相关知识。 首先,我们来看等比数列的求和公式。根据引用[1]中提供的内容,等比数列的递推公式为an=an-1d,其中an表示第n项,d表示公比。根据数列的和的定义,可以得到an=sn-sn-1,其中sn表示前n项和。这个公式在推导排序不等式时非常有用。 接下来,我们来看组合数的乘法性质。引用中提到,相邻项的性质可以表示为an=an-1an+1/2,其中an表示第n项。这个性质在组合数乘等比数列求和中非常重要。 现在我们来解答问题,求组合数乘等比数列的求和。假设等比数列的首项为a,公比为r,共有n项。那么乘以组合数的等比数列的求和可以表示为: S = C(0,0) * a + C(1,1) * ar + C(2,2) * ar^2 + ... + C(n,n) * ar^n 其中C(m,k)表示从m个元素中选取k个元素的组合数。根据组合数的定义,C(m,k)可以表示为m!/(k!(m-k)!),其中!表示阶乘运算。 然后,我们可以将S进行展开和重组。根据引用中提到的展开重组法计算求和式,展开后的求和式可以表示为: S = C(0,0) * a + (C(1,0) + C(1,1)) * ar + (C(2,0) + C(2,1) + C(2,2)) * ar^2 + ... + (C(n-1,0) + C(n-1,1) + ... + C(n-1,n-1)) * ar^(n-1) + C(n,n) * ar^n 注意到组合数的性质C(m,k) + C(m,k+1) = C(m+1,k+1),我们可以简化求和式为: S = C(0,0) * a + C(1,1) * (ar + ar^2) + C(2,2) * (ar^2 + ar^3) + ... + C(n-1,n-1) * (ar^(n-1) + ar^n) + C(n,n) * ar^n 综上所述,组合数乘等比数列的求和可以表示为上述的求和式。这个求和式可以通过计算每一项的组合数和等比数列的乘积,并将所有项相加得到最终的结果。 引用: math_等比数列求和推导&等幂和差推导/两个n次方数之差等差数列🎈ref递推公式通项等差数列和 等比数列🎈递推公式通项公式等比数列求和公式🎈错位相减法 等差乘以等比数列求和问题求导&极限法例: 求和号的性质 ∑ \sum ∑🎈展开重组法计算求和式 立方数和/差的展开两个n次方数之差&和两个奇数次方数之和 等幂差公式推导🎈ref 等幂和差的综合应用(等价无穷小实例) 相邻项的性质 a_n = \frac{a_{n-1} a_{n+1}}{2}; n = 2, 3, ... 等差数列和

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值