等比数列的性质

本文详细探讨了等比数列的概念、性质、判定与证明方法,以及在运算中常用公式和变形技巧。从定义出发,阐述了等比中项、通项公式、前n项和公式,并通过实例解析了等比数列的判定、性质证明及变形应用。文章还介绍了等比数列在数列题目中的应用,包括等比数列的给出方式及求和计算中的项数计算方法,为理解和解决等比数列问题提供了全面指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、等比数列的相关概念:

  • 定义:自然语言略,符号语言:\(\cfrac{a_n}{a_{n-1}}=q\)\(n\ge 2\)\(n\in N^*\)\(q\)为常数。

  • 等比中项:如果三个实数\(a,G,b\)成等比数列,则\(G\)称为\(a,b\)的等比中项,满足\(G^2=ab\)

注意:必须\(ab>0\)才能保证\(G\)的存在性。

任意两个实数都有等差中项,但任意两个实数不一定都有等比中项。

  • 等比数列的通项公式:\(a_n=a_1\cdot q^{n-1}\),推广形式为\(a_n=a_m\cdot q^{n-m}\)

  • 等比数列的前\(n\)项和公式:\(S_n=\left\{\begin{array}{l}{na_1,q=1}\\{\cfrac{a_1\cdot (1-q^n)}{1-q}=\cfrac{a_1-a_nq}{1-q},q\neq 1}\end{array}\right.\)

其中\(n\)为参与求和的项数,而不是最后一项的指数。是分段函数,当不知道\(q\)的值时,应该分类讨论。

二、等比数列的性质

  • ①在等比数列\(\{a_n\}\)中,若\(m+n=p+q=2k(m,n,p,q,k\in N^*)\),则\(a_m\cdot a_n=a_p\cdot a_q=a_k^2\)

  • ②若数列\(\{a_n\}\)\(\{b_n\}\)(项数相同)是等比数列,则\(\{\lambda a_n\}(\lambda\neq 0)\)\(\{\cfrac{1}{a_n}\}\)\(\{a_n^2\}\)\(\{a_n\cdot b_n\}\)\(\{\cfrac{a_n}{b_n}\}\)仍然是等比数列;

  • ③在等比数列\(\{a_n\}\)中,等距离取出若干项也构成一个等比数列,即\(a_n,a_{n+k},a_{n+2k},a_{n+3k},\cdots\)为等比数列,公比为\(q^k\)

  • ④公比\(q\neq -1\)的等比数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),则\(S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots ,\)仍成等比数列,其公比为\(q^n\),当公比\(q=-1\)时,\(S_n,S_{2n}-S_n,S_{3n}-S_{2n},\cdots ,\)不一定成等比数列,若\(n\)为偶数,则其不能构成等比数列,若\(n\)为奇数,则可以构成等比数列。比如数列\(2,-2,2,-2,2,-2,\cdots,2,-2\)

  • \(q\neq 1\)的等比数列的前\(2n\)项,\(S_{偶}=\cfrac{a_2\cdot [1-(q^2)^n]}{1-q^2}\)\(S_{奇}=\cfrac{a_1\cdot [1-(q^2)^n]}{1-q^2}\),则\(\cfrac{S_{偶}}{S_{奇}}=q\)

  • ⑥等比数列的单调性,取决于两个参数\(a_1\)\(q\)的取值,\(a_n=a_1\cdot q^{n-1}\)

故当\(\left\{\begin{array}{l}{a_1>0}\\{q>1}\end{array}\right.\)\(\left\{\begin{array}{l}{a_1<0}\\{0<q<1}\end{array}\right.\)时,\(a_n\)单调递增;

\(\left\{\begin{array}{l}{a_1>0}\\{0<q<1}\end{array}\right.\)\(\left\{\begin{array}{l}{a_1<0}\\{q>1}\end{array}\right.\)时,\(a_n\)单调递减;

三、等比数列的判定与证明:

证明方法:

  • 定义法:\(\cfrac{a_n}{a_{n-1}}=q(n\ge 2)\),或者\(\cfrac{a_{n+1}}{a_n}=q(n\ge 1)\)

  • 等比中项法:\(a_{n+1}^2=a_n\cdot a_{n+2}(n\ge 1)\),或者\(a_n^2=a_{n+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值