具体数学第二版第三章习题(4)

46 (1)证明:

首先有$2n(n+1)=\left \lfloor 2n(n+1)+\frac{1}{2} \right \rfloor=\left \lfloor 2(n^{2}+n+\frac{1}{4}) \right \rfloor=\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor$

其次,令$n+\theta =(\sqrt{2}^{l}+\sqrt{2}^{l-1})m=(1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m$,$n^{'}+\theta^{'} =(\sqrt{2}^{l+1}+\sqrt{2}^{l})m=(1+\sqrt{2})\sqrt{2}^{l}m$

如果$l$为偶数,那么$n+\theta =(1+\frac{\sqrt{2}}{2})k,n^{'}+\theta^{'} =(1+\sqrt{2})k$.所以$\theta =\left \{ \frac{\sqrt{2}}{2}k \right \},\theta^{'} =\left \{ \sqrt{2}k \right \}$,所以$\theta$和$\theta^{'}$的关系是要么$\theta^{'}=2\theta$($\left \lfloor \sqrt{2}k \right \rfloor$为偶数),要么$\theta^{'}=2\theta-1$($\left \lfloor \sqrt{2}k \right \rfloor$为奇数);

如果$l$为奇数,那么$n+\theta =(1+\sqrt{2})k,n^{'}+\theta^{'} =(2+\sqrt{2})k$,这时候$\theta = \theta^{'}$

最后,假设要证明的式子成立,那么$n^{'}=\left \lfloor \sqrt{2n(n+1)} \right \rfloor$

$=\left \lfloor \sqrt{\left \lfloor 2(n+\frac{1}{2})^{2} \right \rfloor} \right \rfloor$

$=\left \lfloor \sqrt{2}(n+\frac{1}{2}) \right \rfloor$ (这一步参见公式$3.9$)

$=\left \lfloor \sqrt{2}\left ( (1+\frac{\sqrt{2}}{2})\sqrt{2}^{l}m -\theta +\frac{1}{2}\right ) \right \rfloor$

$=\left \lfloor n^{'}+\theta^{'}+\sqrt{2}(\frac{1}{2}-\theta) \right \rfloor$

所以只要证明$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

首先当$\theta=\theta^{'}$时成立,

其次,如果$\theta^{'}=2\theta-d$时($d=0$或者$d=1$),那么$0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\theta)<1$

$\Leftrightarrow 0\leq \theta^{'}+\sqrt{2}(\frac{1}{2}-\frac{\theta^{'} +d}{2})<1$

$\Leftrightarrow 0\leq \theta^{'}(2-\sqrt{2})+\sqrt{2}(1-d)<2$

最后这个式子明显成立

(2)由于$Spec(1+\frac{\sqrt{2}}{2}),Spec(1+\sqrt{2})$是一个划分,所以对于任何一个$a$一定存在唯一的$(l,m)$使得$a=(\sqrt{2}^{l}+\sqrt{2}^{l-1})m$,这时候$L_{n}=\left \lfloor\left (  \sqrt{2}^{l+n} -\sqrt{2}^{l+n-1} \right )m\right \rfloor$

47 (1) $c=-\frac{1}{2}$ (2)$c$是整数(3)$c=0$(4)$c$可以为任意值。

48 令$x^{:0}=1,x^{:(k+1)}=x\left \lfloor x^{:k} \right \rfloor,a_{k}=\left \{ x^{:k} \right \},b_{k}=\left \lfloor x^{:k} \right \rfloor\Rightarrow a_{k}+b_{k}=x^{:k}=xb_{k-1}$

所以$(1-xz)(1+b_{1}z+b_{2}z^{2}+...)=1-a_{1}z-a_{2}z^{2}-...\Rightarrow \frac{1}{1-xz}=\frac{1+b_{1}z+b_{2}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}$

对上面的式子两边求$log$并且对$z$求导可以得到$\frac{x}{1-xz}=\frac{a_{1}+2a_{2}z+3a_{3}z^{2}+...}{1-a_{1}z-a_{2}z^{2}-...}+\frac{b_{1}+2b_{2}z+3b_{3}z^{2}+...}{1+b_{1}z+b_{2}z^{2}-...}$

利用公式$\frac{1}{1-z}=1+z+z^{2}+z^{3}+...$分别展开上面式子的左右两侧,可以得到左侧$z^{n-1}$的系数为$x^{n}$,右侧与$z^{n-1}$($n=3$)相关的展开为$(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+(a_{1}z+a_{2}z^{2})+(a_{1}z+a_{2}z^{2})^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-(b_{1}z+b_{2}z^{2})+(b_{1}z+b_{2}z^{2})^{2} \right )=(a_{1}+2a_{2}z+3a_{3}z^{2})\left ( 1+a_{1}z+(a_{1}^{2}+a_{2})z^{2} \right )+(b_{1}+2b_{2}z+3b_{3}z^{2})\left ( 1-b_{1}z+(b_{1}^{2}-b_{2})z^{2} \right )$

可以得到$z^{2}$的系数为$a_{1}(a_{1}^{2}+a_{2})+2a_{1}a_{2}+3a_{3}+b_{1}(b_{1}^{2}-b_{2})-2b_{1}b_{2}+3b_{3}=3(a_{3}+b_{3})+3a_{1}a_{2}+a_{1}^{3}-3b_{1}b_{2}+b_{1}^{3}$

所以可以证明$n=3$时成立。

49 $\left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+\left \lfloor n(\left \lfloor \beta \right \rfloor+\left \{ \beta \right \}) \right \rfloor$

$=\left \lfloor n\alpha \right \rfloor+n\left \lfloor \beta \right \rfloor+\left \lfloor n\left \{ \beta \right \} \right \rfloor$

$=\left \lfloor n\left \{ \beta \right \} \right \rfloor+\left \lfloor n(\alpha+\left \lfloor \beta \right \rfloor) \right \rfloor$

所以令$\alpha^{'}=\left \{ \beta \right \},\beta^{'}=\alpha+\left \lfloor \beta \right \rfloor$可以得到完全相同的集合。所以$\alpha=\left \{ \beta \right \}$

并且,如果$\alpha=\left \{ \beta \right \}$,令$m=\left \lfloor \beta \right \rfloor,S=\left \{ \left \lfloor n\alpha \right \rfloor+\left \lfloor n\beta \right \rfloor-mn|n>0 \right \}=\left \{ 2\left \lfloor n\alpha \right \rfloor|n>0 \right \}$

所以$S$中相邻两个元素的差值要么是0要么是2,所以$\frac{1}{2}S=Spec(\alpha)$进而可以确定$\alpha$

50 书中给出的解释是$\alpha \beta ,\beta ,1$在有理数上线性独立,也就是说不存在有理数$\frac{p}{q},\frac{m}{n}$使得$1=\frac{p}{q}\alpha\beta+\frac{m}{n}\beta$。如何证明完全不懂。

51 题目中的证明:

(1)令$g(n)=Z_{n}^{-2^{n}}>0$,因为$\frac{g(n)}{g(n-1)}=\frac{Z_{n}^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=\frac{(Z_{n-1}^{2}-1)^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}<\frac{(Z_{n-1}^{2})^{-2^{n}}}{Z_{n-1}^{-2^{n-1}}}=1$,所以$g(n)$是减函数,所以$f(x)^{2^{n}}<Z_{n}$

(2)令$p(n)=(Z_{n}-1)^{-2^{n}}$,将$p(n),p(n-1)$两边同时取$2^{n+1}$,可以得到$p(n)$是增函数,所以$f(x)^{2^{n}}>Z_{n}-1$

$f(x)$其他的性质不知道。

52 首先题目中的描述貌似应该是$\alpha_{1}>\alpha_{2}>...>\alpha_{m}$

$Spec(7;-3)\bigcup Spec(\frac{7}{2};-1)\bigcup Spec(\frac{7}{4};0)$是已知的$\alpha$是有理数的一组解。所以题目中给出的证明有可能是成立的。

53 有些数字好像很快就找到了,比如

$\frac{2}{5}=\frac{1}{3}+\frac{1}{15},\frac{2}{7}=\frac{1}{5}+\frac{1}{13}+\frac{1}{115}+\frac{1}{10465},\frac{3}{11}=\frac{1}{5}+\frac{1}{15}+\frac{1}{165}$

转载于:https://www.cnblogs.com/jianglangcaijin/p/9472572.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
具体数学:计算机科学基础:第2》是一本在大学中广泛使用的经典数学教科书.书中讲解了许多计算机科学中用到的数学知识及技巧,教你如何把一个实际问题一步步演化为数学模型,然后通过计算机解决它,特别着墨于算法分析方面.其主要内容涉及和式、整值函数、数论、二项式系数、特殊的数、生成函数、离散概率、渐近式等,都是编程所必备的知识.另外,本书包括了六大类500 多道习题,并给出了所有习题的解答,有助读者加深书中内容的理解 [1] .   《具体数学:计算机科学基础:第2》面向从事计算机科学、计算数学、计算技术诸方面工作的人员,以及高等院校相关专业的师生. 作者: ronald l. graham(葛立恒):著名数学家,美国加州大学圣迭戈分校计算机与信息科学专业教席(jacobs endowed chair),at&t实验室研究中心荣誉首席科学家,美国数学学会前任主席。   donald e. knuth(高德纳):著名计算机科学家,算法与程序设计技术的先驱者、斯坦福大学计算机系荣休教授、计算机排系统tex和metafont字体系统的发明人,因诸多成就以及大量富于创造力和具有深远影响的著作(19部书,160篇论文)而誉满全球。   oren patashnik:著名计算机科学家,bibtex的创始人之一,是位于拉荷亚的通信研究中心的研究员。他1976年毕业于耶鲁大学,后来在斯坦福大学师从knuth,1980年就职于贝尔实验室。1985年与leslie lamport合作创建了bibtex(latex的一种工具,用于管理文献、产生文献目录)。 目录: 《具体数学:计算机科学基础:第2》   第1章  递归问题  1   1.1  河内塔  1   1.2  平面上的直线  4   1.3  约瑟夫问题  7   习题  14   第2章  和式  18   2.1  记号  18   2.2  和式和递归式 21   2.3  和式的处理  25   2.4  多重和式  28   2.5  一般性的方法 35   2.6  有限微积分和 无限微积分 39   2.7  无限和式  47   习题  52   第3章  整值函数 56   3.1  底和顶 56   3.2  底和顶的应用  58   3.3  底和顶的递归式 66   3.4  mod:二元运算 68 3.5 底和顶的和式 72 习题79 第4章数论 85 4.1整除性 85 4.2素数 88 4.3素数的例子 89 4.4阶乘的因子93 4.5互素 96 4.6mod:同余关系 103 4.7独立剩余105 4.8进一步的应用 107 4.9ψ函数和μ函数110 习题119 第5章二项式系数 126 5.1基本恒等式126 5.2基本练习143 5.3处理的技巧154 5.4生成函数164 5.5超几何函数170 5.6超几何变换 180 5.7部分超几何和式186 5.8机械求和法 191 习题 202 第6章特殊的数 214 6.1斯特林数 214 6.2欧拉数 223 6.3调和数 228 6.4调和求和法 233 6.5伯努利数 237 6.6斐波那契数244 6.7连项式 252 习题259 第7章生成函数268 7.1多米诺理论与换零钱 268 7.2基本策略 277 7.3解递归式282 7.4特殊的生成函数 294 7.5卷积 296 7.6指数生成函数 305 7.7狄利克雷生成函数 310 习题312 第8章离散概率 320 8.1定义 320 8.2均值和方差 325 8.3概率生成函数 331 8.4抛掷硬币 336 8.5散列法 344 习题 357 第9章渐近式 367 9.1量的等级 368 9.2大O记号370 9.3O运算规则 376 9.4两个渐近技巧 388 9.5欧拉求和公式393 9.6最后的求和法398 习题410

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值