具体数学第三章作业解答

老师的具体数学作业要电子版了,那就把我自己的解答放在这里。

10.

45989588.jpg

\[ \begin{array}{l} \left \lceil \frac{2x+1} {2} \right \rceil-\left \lceil \frac{2x+1} {4} \right \rceil+\left \lfloor \frac{2x+1} {4} \right \rfloor \\ =\left \lceil \frac{2x+1} {2} \right \rceil-(\left \lceil \frac{2x+1} {4} \right \rceil-\left \lfloor \frac{2x+1} {4} \right \rfloor)\\ =\left \lceil x+\frac{1} {2} \right \rceil-[\frac{2x+1}{4}不是整数] \end{array} \]

\(\frac{2x+1}{4}\)是整数,则:
\[ \begin{array}{l}2x+1=4N \quad (N为整数)\\ 2x=4N-1\\ x=2N-\frac{1}{2} \end{array} \]

  • \({x}\neq\frac{1} {2}\),则原式=\(\left \lceil x+\frac{1}{2} \right \rceil-1=\left \lfloor x \right \rfloor\)
  • \(x=\frac{1} {2}\),则原式=\(\left \lceil x+\frac{1}{2} \right \rceil=x+\frac{1}{2}=\left \lceil x \right\rceil\)
12.

83026907.jpg

\[ \begin{array}{l}\left \lceil \frac{n}{m} \right \rceil=\left \lfloor \frac{n+m-1}{m} \right \rfloor\\ \left \lfloor \frac{n+m-1}{m} \right \rfloor=\left \lfloor \frac{n}{m} +1-\frac{1}{m}\right \rfloor=\left \lfloor \frac{n-1}{m} \right \rfloor+1 \end{array} \]

则证明:\(\left \lceil \frac{n}{m} \right \rceil-\left \lfloor \frac{n-1}{m} \right \rfloor=1\)即可

易知:\(0<\frac{n}{m}-\frac{n-1}{m}\leq1\)(当且仅当m=1时,等式成立)

  • 当m=1时,\(\left \lceil n \right \rceil-\left \lfloor n-1 \right \rfloor=n-n+1=1成立\)

  • \(m\neq1\)时,

    • \(\frac{n}{m}\)为整数,则\(\frac{n-1}{m}<\frac{n-1}{m}且\frac{n-1}{m}不为整数\)

      \(\left \lceil \frac{n}{m} \right \rceil-\left \lfloor \frac{n-1}{m} \right \rfloor=\frac{n}{m}-\left \lfloor \frac{n-1}{m}\right \rfloor=1\)

    • \(\frac{n-1}{m}\)为整数,则\(\frac{n-1}{m}<\frac{n-1}{m}且\frac{n}{m}不为整数\)

      \(\left \lceil \frac{n}{m} \right \rceil-\left \lfloor \frac{n-1}{m} \right \rfloor=\left\lfloor\frac{n}{m}\right\rfloor-\frac{n-1}{m}=1\)

    • \(\frac{n-1}{m}和\frac{n}{m}\)均非整数,则n mod m<1 ,(n-1) mod m<1且\(\left \lfloor \frac{n}{m} \right \rfloor=\left \lfloor \frac{n-1}{m} \right \rfloor\), 则\(\left \lceil \frac{n}{m} \right \rceil-\left \lfloor \frac{n-1}{m} \right \rfloor=1\)

证毕

23.

48887891.jpg

设第n个元素为\(x_n\)且为第m组, 则\(x_n=m\)

此时:
\[ \begin{array}{l} \frac{1}{2}m(m-1)<n\leq\frac{1}{2}m(m+1)\\ m^2-m<2n\leq m^2+m\\ m^2-m+\frac{1}{4}<2n<m^2+m+\frac{1}{4} \quad m,n均为正整数,左侧小于2n,在加上\frac{1}{4},大小关系不改变\\ (m-\frac{1}{2})^2<2n<(m+\frac{1}{2})^2\\ m-\frac{1}{2}<\sqrt{2n}<m+\frac{1}{2}\\ m<\sqrt{2n}+\frac{1}{2}<m+1\\ 则m=\left \lfloor \sqrt{2n}+\frac{1}{2} \right \rfloor\\ 即x_n=\left \lfloor \sqrt{2n}+\frac{1}{2} \right \rfloor\\ \end{array} \]

约瑟夫环

n个人,每隔q个人去掉1人,最终剩下的人的编号?

n个人,初始编号为1, 2, ..., n

重新编号,第1个人:n+1,第2个人:n+2,直至第q个人:去掉,第q+1个人:n+q

假设当前去掉的人的编号为kq,此时去掉了k个人,接下来的人的编号为n+k(q-1)+1

也即:原来kq+d -> 现在n+k(q-1)+d

最后去掉的人编号为nq

令N=n+k(q-1)+d

上一次编号为kq+d=kq+N-n-k(q-1)=k+N-n

\(k=\frac{N-n-d}{q-1}=\left \lfloor \frac{N-n-1}{q-1} \right \rfloor\)

上一次编号为:

\(\left \lfloor \frac{N-n-1}{q-1} \right \rfloor+N-n\)

令D=qn+1-N替代N

\[ \begin{array}{l}D = qn + 1 - N \\ = qn + 1 - \left( {\left\lfloor {\frac{ {(qn + 1 - D) - n - 1}}{ {q - 1}}} \right\rfloor + qn + 1 - D - n} \right)\\ = n + D - \left\lfloor {\frac{ {(q - 1)n - D}}{ {q - 1}}} \right\rfloor \\ = D - \left\lfloor {\frac{ { - D}}{ {q - 1}}} \right\rfloor \\ = D + \left\lceil {\frac{D}{ {q - 1}}} \right\rceil \\ = \left\lceil {\frac{q}{ {q - 1}}D} \right\rceil \end{array} \]

转载于:https://www.cnblogs.com/mengnan/p/9307542.html

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值