《具体数学》部分习题解答3

3.1

在第一章分析约瑟夫问题时,将任意的一个正整数 n n n 表示成了 n = 2 m + l n=2^m+l n=2m+l 的形式,其中 0 ≤ l < 2 m 0 \le l < 2^m 0l<2m 。请利用底括号或顶括号,给出将 l l l m m m 表示成为 n n n 的函数的显式公式
在这里插入图片描述

3.2

与一个给定实数 x x x 距离最近的整数的公式是什么?在对等情况下, x x x 恰好在两个整数的中间位置,请给出一个表达式,它( a a a )往上舍入成整数,即成为 ⌈ x ⌉ \lceil x \rceil x ;( b b b )向下舍入成整数,即成为 ⌊ x ⌋ \lfloor x \rfloor x

不失一般性,假设 x x x 位于 n n n n + 1 n+1 n+1 之间。
a a a 种情况下,仅当 x ∈ [ n , n + 0.5 ) x \in [n,n+0.5) x[n,n+0.5) 时,答案是 n n n ,否则为 n + 1 n+1 n+1 ,因此将 x x x 加上0.5再向下取整。
b b b 种情况下,仅当 x ∈ [ n , n + 0.5 ] x \in [n,n+0.5] x[n,n+0.5] 时,答案是 n n n ,否则为 n + 1 n+1 n+1 ,因此将 x x x 减去0.5再向上取整。
a . ⌊ x + 0.5 ⌋ b . ⌈ x − 0.5 ⌉ a. \lfloor x + 0.5 \rfloor \\ b. \lceil x - 0.5 \rceil a.x+0.5b.x0.5

3.3

m m m n n n 是正整数,且 α \alpha α 是大于 n n n 的无理数时,计算 ⌊ ⌊ m α ⌋ n / α ⌋ \lfloor \lfloor m \alpha \rfloor n / \alpha \rfloor mαn/α
在这里插入图片描述

3.5

n n n 是正整数时,求使得 ⌊ n x ⌋ = n ⌊ x ⌋ \lfloor n x \rfloor = n \lfloor x \rfloor nx=nx 成立的必要充分条件。(你的条件应该包含 { x } \{x\} {x}
在这里插入图片描述

3.6

f ( x ) f(x) f(x) 是仅当 x x x 为整数时才取整数值的连续单调递减函数时,关于 ⌊ f ( x ) ⌋ \lfloor f(x) \rfloor f(x) 有什么可谈的吗?
在这里插入图片描述

3.7

解递归式
X n = n   , 0 ≤ n < m X n = X n − m + 1   , n ≥ m X_n = n \ , \quad 0 \le n < m \\ X_n = X_{n-m}+1 \ , \quad n \ge m Xn=n ,0n<mXn=Xnm+1 ,nm

不妨列出部分 X n X_n Xn 的值:

n0123 … \dots m-1mm+1 … \dots 2m2m+1 … \dots
X n X_n Xn0123 … \dots m-112 … \dots 23 … \dots

由此可以发现 X n X_n Xn 的规律并写出表达式: X n = n   m o d   m + ⌊ n m ⌋ X_n = n\ mod\ m + \lfloor \frac{n}{m} \rfloor Xn=n mod m+mn

3.8

证明狄利克雷抽屉原理:如果 n n n 个物体放进 m m m 个盒子中,那么某个盒子中必定含有 ≥ ⌈ n / m ⌉ \ge \lceil n/m \rceil n/m 个物体,且有某个盒子中必定含有 ≤ ⌊ n / m ⌋ \le \lfloor n/m \rfloor n/m 个物体。

反证法:假设所有盒子中含有 < ⌈ n m ⌉ < \lceil \frac{n}{m} \rceil <mn 个物体,也即含有 ≤ ( ⌈ n m ⌉ − 1 ) \le ( \lceil \frac{n}{m} \rceil -1) (mn1) 个物体,因此,总共 m m m 个盒子一共含有 ≤ m ( ⌈ n m ⌉ − 1 ) \le m (\lceil \frac{n}{m} \rceil -1) m(mn1) 个物体,有: n m + 1 ≤ ⌈ n m ⌉ \frac{n}{m} + 1 \le \lceil \frac{n}{m} \rceil mn+1mn ,矛盾,假设不成立,即证某个盒子中必定含有 ≥ ⌈ n / m ⌉ \ge \lceil n/m \rceil n/m 个物体。
同理可证某个盒子中必定含有 ≤ ⌊ n / m ⌋ \le \lfloor n/m \rfloor n/m 个物体。

3.10

证明,表达式
⌈ 2 x + 1 2 ⌉ − ⌈ 2 x + 1 4 ⌉ + ⌊ 2 x + 1 4 ⌋ \lceil \frac{2x+1}{2} \rceil - \lceil \frac{2x+1}{4} \rceil + \lfloor \frac{2x+1}{4} \rfloor 22x+142x+1+42x+1
总是等于 ⌊ x ⌋ \lfloor x \rfloor x 或者 ⌈ x ⌉ \lceil x \rceil x ,每一种情形在何时会出现?

在这里插入图片描述

3.11

给出正文中提及的证明细节:当 α < β \alpha < \beta α<β 时,开区间 ( α , β ) (\alpha , \beta) (α,β) 恰好包含 ⌈ β ⌉ − ⌊ α ⌋ − 1 \lceil \beta \rceil - \lfloor \alpha \rfloor -1 βα1 个整数。为使证明正确,为什么 α = β \alpha = \beta α=β 的情形必须排除在外?

在这里插入图片描述

3.12

证明,对所有整数 n n n 和所有正整数 m m m
⌈ n m ⌉ = ⌊ n + m − 1 m ⌋ \lceil \frac{n}{m} \rceil = \lfloor \frac{n+m-1}{m} \rfloor mn=mn+m1
(这个恒等式给出了另一种将顶与底相互转化的方法,它用不到反射律)

在这里插入图片描述
在这里插入图片描述

3.14

证明或推翻: ( x   m o d   n y )   m o d   y = x   m o d   y   , n 为 整 数 (x \ mod \ ny) \ mod \ y =x \ mod \ y \ , \quad n为整数 (x mod ny) mod y=x mod y ,n

在这里插入图片描述

3.15

存在与
⌊ m x ⌋ = ⌊ x ⌋ + ⌊ x + 1 m ⌋ + ⋯ + ⌊ x + m − 1 m ⌋ \lfloor mx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{m} \rfloor + \dots + \lfloor x + \frac{m-1}{m} \rfloor mx=x+x+m1++x+mm1
类似的用顶替代底的恒等式吗?

已 知 : n = ⌈ n m ⌉ + ⌈ n − 1 m ⌉ + ⋯ + ⌈ n − m + 1 m ⌉ 用 ⌈ m x ⌉ 替 换 n , 得 到 : ⌈ m x ⌉ = ⌈ x ⌉ + ⌈ x − 1 m ⌉ + ⋯ + ⌈ x − m − 1 m ⌉ 已知:n = \lceil \frac{n}{m} \rceil + \lceil \frac{n-1}{m} \rceil + \dots + \lceil \frac{n-m+1}{m} \rceil \\ 用 \lceil mx \rceil 替换 n ,得到:\\ \lceil mx \rceil = \lceil x \rceil + \lceil x - \frac{1}{m} \rceil + \dots + \lceil x - \frac{m-1}{m} \rceil n=mn+mn1++mnm+1mxnmx=x+xm1++xmm1

3.16

证明 n   m o d   2 = ( 1 − ( − 1 ) n ) / 2. n \ mod \ 2 = (1 - (-1)^n )/2. n mod 2=(1(1)n)/2. n   m o d   3 n \ mod \ 3 n mod 3 求出并证明类似的形如 a + b ω n + c ω 2 n a + b \omega^n + c \omega^{2n} a+bωn+cω2n 的表达式,其中 ω \omega ω 是复数 ( − 1 + i 3 ) / 2 (-1 + i \sqrt{3} ) / 2 (1+i3 )/2 。提示: ω 3 = 1 \omega^3 = 1 ω3=1 1 + ω + ω 2 = 0 1 + \omega + \omega^2 = 0 1+ω+ω2=0

n 无 非 是 两 种 情 况 : n = 2 k 或 n = 2 k + 1 , 其 中 k ∈ Z 如 果 n = 2 k , 则 n   m o d   2 = 1 − ( − 1 ) 2 k 2 = 0 如 果 n = 2 k + 1 , 则 n   m o d   2 = 1 − ( − 1 ) 2 k + 1 2 = 1 无 论 哪 种 情 况 等 式 均 成 立 。 n 无非是两种情况:n = 2k 或 n = 2k+1 , 其中 k \in \mathbb{Z} \\ 如果 n = 2k ,则 n \ mod \ 2 = \frac{1-(-1)^{2k}}{2} = 0 \\ 如果 n = 2k+1 ,则 n \ mod \ 2 = \frac{1-(-1)^{2k+1}}{2} = 1 \\ 无论哪种情况等式均成立。 nn=2kn=2k+1,kZn=2kn mod 2=21(1)2k=0n=2k+1n mod 2=21(1)2k+1=1
同理:
在这里插入图片描述

3.17

x ≥ 0 x \ge 0 x0 的情况下,通过用 ∑ j [ 1 ≤ j ≤ x + k / m ] \sum_{j} [1 \le j \le x + k/m] j[1jx+k/m] 替换 ⌊ x + k / m ⌋ \lfloor x + k/m \rfloor x+k/m 并首先对 k k k 求和,来计算和式 ∑ 0 ≤ k < m ⌊ x + k / m ⌋ \sum_{0 \le k < m} \lfloor x + k/m \rfloor 0k<mx+k/m 。你的答案与 ⌊ m x ⌋ = ⌊ x ⌋ + ⌊ x + 1 m ⌋ + ⋯ + ⌊ x + m − 1 m ⌋ \lfloor mx \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{m} \rfloor + \dots + \lfloor x + \frac{m-1}{m} \rfloor mx=x+x+m1++x+mm1吻合吗?

在这里插入图片描述

3.19

求出关于实数 b > 1 b > 1 b>1 的一个必要充分条件,使得
⌊ log ⁡ b x ⌋ = ⌊ log ⁡ b ⌊ x ⌋ ⌋ \lfloor \log_b{x} \rfloor = \lfloor \log_b{\lfloor x \rfloor} \rfloor logbx=logbx
对所有实数 x ≥ 1 x \ge 1 x1 都成立

在这里插入图片描述

3.20

x > 0 x>0 x>0 时,求闭区间 [ α … β ] [\alpha \dots \beta] [αβ] x x x 的所有倍数之和

⌈ α x ⌉ 代 表 闭 区 间 中 首 个 x 的 倍 数 ⌊ β x ⌋ 代 表 闭 区 间 中 最 后 一 个 x 的 倍 数 因 此 有 : ∑ k = ⌈ α x ⌉ ⌊ β x ⌋ k x = x 2 ( ( ⌊ β x ⌋ ) 2 + ⌊ β x ⌋ − ( ⌈ α x ⌉ ) 2 + ⌈ α x ⌉ ) \lceil \frac{\alpha}{x} \rceil 代表闭区间中首个 x 的倍数 \\ \lfloor \frac{\beta}{x} \rfloor 代表闭区间中最后一个 x 的倍数 \\ 因此有:\sum_{k=\lceil \frac{\alpha}{x} \rceil}^{\lfloor \frac{\beta}{x} \rfloor} kx = \frac{x}{2} ((\lfloor \frac{\beta}{x} \rfloor)^2 + \lfloor \frac{\beta}{x} \rfloor -(\lceil \frac{\alpha}{x} \rceil)^2 + \lceil \frac{\alpha}{x} \rceil) xαxxβxk=xαxβkx=2x((xβ)2+xβ(xα)2+xα)

3.21

0 ≤ m ≤ M 0 \le m \le M 0mM ,有多少个数 2 m 2^m 2m 的十进制表示中,其首位数字为1?

在 十 进 制 表 示 中 , 如 果 首 位 数 字 为 1 , 对 应 该 数 字 为 10 的 幂 而 在 [ 1 0 n , 2 ∗ 1 0 n ) 中 一 共 有 ( ⌈ lg ⁡ 2 + n lg ⁡ 10 ⌉ − ⌈ n lg ⁡ 10 ⌉ ) 个 2 的 幂 , 即 一 个 2 的 幂 问 题 即 转 换 为 : 对 于 0 ≤ m ≤ M , 2 m 中 有 多 少 个 10 的 幂 ? 因 此 答 案 为 : ⌊ log ⁡ 2 M ⌋ + 1 在十进制表示中,如果首位数字为1,对应该数字为10的幂 \\ 而在[10^n, 2*10^n)中一共有(\lceil \lg{2} + n \lg{10} \rceil - \lceil n \lg{10} \rceil)个2的幂,即一个2的幂 \\ 问题即转换为:对于0 \le m \le M,2^m中有多少个10的幂? \\ 因此答案为:\lfloor \log{2^M} \rfloor + 1 1,10[10n,210n)(lg2+nlg10nlg10)220mM2m10log2M+1

3.22

计算和式 S n = ∑ k ≥ 1 ⌊ n / 2 k + 1 2 ⌋ S_n = \sum_{k \ge 1} \lfloor n/2^k + \frac{1}{2} \rfloor Sn=k1n/2k+21 以及 T n = ∑ k ≥ 1 2 k ⌊ n / 2 k + 1 2 ⌋ 2 . T_n = \sum_{k \ge 1} 2^k \lfloor n/2^k + \frac{1}{2} \rfloor^2. Tn=k12kn/2k+212.

在这里插入图片描述

3.23

证明序列
1 , 2 , 2 , 3 , 3 , 3 , 4 , 4 , 4 , 4 , 5 , 5 , 5 , 5 , 5 , … 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5, \dots 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,
的第 n n n 个元素是 ⌊ 2 n + 1 2 ⌋ \lfloor \sqrt{2n} + \frac{1}{2} \rfloor 2n +21 (这个序列恰好包含 m m m m m m

在这里插入图片描述

3.25

证明或推翻:对所有非负的 n n n ,由
K 0 = 1 K n + 1 = 1 + m i n ( 2 K ⌊ n / 2 ⌋ , 3 K ⌊ n / 3 ⌋ )   , n ≥ 0 K_0 = 1 \\ K_{n+1} = 1 + min(2K_{\lfloor n/2 \rfloor},3K_{\lfloor n/3 \rfloor}) \ , n \ge 0 K0=1Kn+1=1+min(2Kn/2,3Kn/3) ,n0
所定义的高德纳数满足 K n ≥ n K_n \ge n Knn.

在这里插入图片描述

3.26

证明:辅助的约瑟夫数满足:
( q q − 1 ) n ≤ D n ( q ) ≤ q ( q q − 1 ) n   , n ≥ 0 (\frac{q}{q-1})^n \le D_n^{(q)} \le q (\frac{q}{q-1})^n \ , \quad n \ge 0 (q1q)nDn(q)q(q1q)n ,n0

辅助的约瑟夫数:
D 0 ( q ) = 1 D n ( q ) = ⌈ q q − 1 D n − 1 ( q ) ⌉   , n > 0 D_0^{(q)} = 1 \\ D_n^{(q)} = \lceil \frac{q}{q-1} D_{n-1}^{(q)} \rceil \ , \quad n > 0 D0(q)=1Dn(q)=q1qDn1(q) ,n>0
在辅助的约瑟夫数中, q q q 应该是正整数.

用数学归纳法证明:
第一个 ≤ \le 号:
假 设 ( q q − 1 ) n − 1 ≤ D n − 1 ( q ) 则 : D n ( q ) = ⌈ q q − 1 D n − 1 ( q ) ⌉ ≥ ⌈ ( q q − 1 ) n ⌉ ≥ ( q q − 1 ) n 假设 (\frac{q}{q-1})^{n-1} \le D_{n-1}^{(q)} \\ 则: D_n^{(q)} = \lceil \frac{q}{q-1} D_{n-1}^{(q)} \rceil \ge \lceil (\frac{q}{q-1})^n \rceil \ge (\frac{q}{q-1})^n (q1q)n1Dn1(q)Dn(q)=q1qDn1(q)(q1q)n(q1q)n
第二个 ≤ \le 号:
假 设 D n − 1 ( q ) ≤ q ( q q − 1 ) n − 1 − ( q − 1 ) ≤ q ( q q − 1 ) n − 1 D n ( q ) = ⌈ q q − 1 D n − 1 ( q ) ⌉ ≤ ⌈ q ( q q − 1 ) n − q ⌉ ⇔ D n ( q ) ≤ q ( q q − 1 ) n + 1 − q ≤ q ( q q − 1 ) n 假设 D_{n-1}^{(q)} \le q (\frac{q}{q-1})^{n-1} - (q - 1) \le q (\frac{q}{q-1})^{n-1} \\ D_n^{(q)} = \lceil \frac{q}{q-1} D_{n-1}^{(q)} \rceil \le \lceil q (\frac{q}{q-1})^n - q \rceil \\ \Leftrightarrow D_n^{(q)} \le q(\frac{q}{q-1})^n + 1 - q \le q (\frac{q}{q-1})^n Dn1(q)q(q1q)n1(q1)q(q1q)n1Dn(q)=q1qDn1(q)q(q1q)nqDn(q)q(q1q)n+1qq(q1q)n

3.30

证明:如果 m m m 是一个大于2的整数,其中 α + α − 1 = m \alpha + \alpha^{-1} = m α+α1=m α > 1 \alpha > 1 α>1,那么递归式
在这里插入图片描述

有解 X n = ⌈ α 2 n ⌉ . X_n = \lceil \alpha^{2^n} \rceil. Xn=α2n. 例如,如果 m = 3 m=3 m=3, 则解为:
X n = ⌈ ϕ 2 n + 1 ⌉   , ϕ = 1 + 5 2   , α = ϕ 2 X_n = \lceil \phi^{2^{n+1}} \rceil \ , \quad \phi = \frac{1+\sqrt{5}}{2} \ , \quad \alpha = \phi^2 Xn=ϕ2n+1 ,ϕ=21+5  ,α=ϕ2

在这里插入图片描述

3.31

证明或推翻: ⌊ x ⌋ + ⌊ y ⌋ + ⌊ x + y ⌋ ≤ ⌊ 2 x ⌋ + ⌊ 2 y ⌋ . \lfloor x \rfloor + \lfloor y \rfloor + \lfloor x+y \rfloor \le \lfloor 2x \rfloor + \lfloor 2y \rfloor. x+y+x+y2x+2y.

在这里插入图片描述

3.34

f ( n ) = ∑ k = 1 n ⌈ lg ⁡ k ⌉ . f(n) = \sum_{k=1}^n \lceil \lg{k} \rceil. f(n)=k=1nlgk.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.35

化简公式 ⌊ ( n + 1 ) 2   n !   e ⌋   m o d   n \lfloor (n+1)^2 \ n! \ e \rfloor \ mod \ n (n+1)2 n! e mod n.

在这里插入图片描述

3.45

如果 m m m 是一个正整数,推广习题30的技巧来求
在这里插入图片描述

的封闭形式的解

在这里插入图片描述
如有问题,欢迎大家指出,谢谢

  • 12
    点赞
  • 44
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
数学建模算法与应用(第3版)》是一本关于数学建模的教材,作者是司守奎。这本教材主要介绍了数学建模的基本原理和相关算法的实际应用。教材的内容分为六个部分,包括前言、单目标优化问题、约束优化问题、整数规划问题、图论问题以及其他问题。每一个部分都围绕着数学建模的实际问题展开,通过理论的讲解和实例的演示,帮助读者掌握数学建模的方法和技巧。 这本教材的特点之一是结合了理论和实践,不仅仅是对数学建模方法的介绍,还包括了一些实际问题的解决方案。作者通过详细的案例分析,让读者更直观地了解数学建模在实际中的运用,并引导读者通过具体问题的解决,加深对数学建模方法的理解。 此外,这本教材还提供了大量的习题和实例,供读者练习和巩固所学的知识。习题的难度有所区分,从基础到高级不同层次,读者可以根据自己的实际情况选择合适的习题进行练习。通过习题解答和实例的分析,读者可以更好地理解数学建模的过程和方法。 总之,《数学建模算法与应用(第3版)》是一本全面介绍数学建模的教材,适合数学、计算机等专业的学生以及对数学建模感兴趣的读者阅读。通过学习这本教材,读者可以系统地了解数学建模的基本原理和方法,并通过实例的演示和习题的练习,提高数学建模的能力和水平。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值