sklearn实现lda模型_运用sklearn进行线性判别分析(LDA)代码实现

本文介绍如何利用sklearn库中的LDA进行有监督的数据降维,通过葡萄酒数据集展示了LDA在分类任务中的应用,相较于PCA,LDA在考虑分类标签的情况下能更好地提升模型性能。
摘要由CSDN通过智能技术生成

基于sklearn的线性判别分析(LDA)代码实现

一、前言及回顾

本文记录使用sklearn库实现有监督的数据降维技术——线性判别分析(LDA)。在上一篇LDA线性判别分析原理及python应用(葡萄酒案例分析),我们通过详细的步骤理解LDA内部逻辑实现原理,能够更好地掌握线性判别分析的内部机制。当然,在以后项目数据处理,我们有更高效的实现方法,这篇将记录学习基于sklearn进行LDA数据降维,提高编码速度,而且会感觉更加简单。

学习之后可以对数据降维处理两种实现方法进行对比:

二、定义分类结果可视化函数

这个函数与上一篇文章 运用sklearn进行主成分分析(PCA)代码实现 里是一样的,plot_decision_region函数在分类结果区别决策区域中可以复用。

def plot_decision_regions(x, y, classifier, resolution=0.02):

markers= ['s', 'x', 'o', '^', 'v']

colors= ['r', 'g', 'b', 'gray', 'cyan']

cmap=ListedColormap(colors[:len(np.unique(y))])

x1_min, x1_max= x[:, 0].min() - 1, x[:, 0].max() + 1x2_min, x2_max= x[:, 1].min() - 1, x[:, 1].max() + 1xx1, xx2=np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))

z=classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

z=z.reshape(xx1.shape)

plt.contourf(xx1, xx2, z, alpha=0.4, cmap=cmap)for idx, cc inenumerate(np.unique(y)):

plt.scatter(x=x[y ==cc, 0],

y=x[y == cc, 1],

alpha=0.6,

c=cmap(idx),

edgecolor='black',

marker=markers[idx],

label=cc)

三、10行代码实现葡萄酒数据集分类

sklearn依然实现了LDA类方法,我们只需要直接调用而无需自己实现内部逻辑,这样显得更加方便。所以,10行代码实现也不为过,重点需要先理解内部逻辑原理。

关键代码如下:

lda = LDA(n_components=2)

lr=LogisticRegression()

x_train_lda= lda.fit_transform(x_train_std, y_train) #LDA是有监督方法,需要用到标签

x_test_lda = lda.fit_transform(x_test_std, y_test) #预测时候特征向量正负问题,乘-1反转镜像

lr.fit(x_train_lda, y_train)

plot_decision_regions(x_train_pca, y_train, classifier=lr)

plt.xlabel('LD1')

plt.ylabel('LD2')

plt.legend(loc='lower left')

plt.show()

使用训练集拟合模型之后,分类效果如何呢?

可以看到模型对训练数据集精确地分类,比PCA效果好,因为LDA使用了数据集的标签,是有监督的学习。

更准确来说,我们要看模型在测试集上的效果,对比如下:

可见,经过逻辑回归分类器,提取了两个最具线性判别性的特征,将包含13个特征的葡萄酒数据集投影到二维子空间,实现了精确地分类。

四、完整代码

from sklearn.linear_model importLogisticRegressionfrom sklearn.discriminant_analysis importLinearDiscriminantAnalysis as LDAfrom sklearn.preprocessing importStandardScalerfrom sklearn.model_selection importtrain_test_splitfrom matplotlib.colors importListedColormapimportmatplotlib.pyplot as pltimportpandas as pdimportnumpy as npdef plot_decision_regions(x, y, classifier, resolution=0.02):

markers= ['s', 'x', 'o', '^', 'v']

colors= ['r', 'g', 'b', 'gray', 'cyan']

cmap=ListedColormap(colors[:len(np.unique(y))])

x1_min, x1_max= x[:, 0].min() - 1, x[:, 0].max() + 1x2_min, x2_max= x[:, 1].min() - 1, x[:, 1].max() + 1xx1, xx2=np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))

z=classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

z=z.reshape(xx1.shape)

plt.contourf(xx1, xx2, z, alpha=0.4, cmap=cmap)for idx, cc inenumerate(np.unique(y)):

plt.scatter(x=x[y ==cc, 0],

y=x[y == cc, 1],

alpha=0.6,

c=cmap(idx),

edgecolor='black',

marker=markers[idx],

label=cc)defmain():#load data

df_wine = pd.read_csv('D:\\PyCharm_Project\\maching_learning\\wine_data\\wine.data', header=None) #本地加载

#df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data',

#header=None) # 服务器加载

#split the data,train:test=7:3

x, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values

x_train, x_test, y_train, y_test= train_test_split(x, y, test_size=0.3, stratify=y, random_state=0)#standardize the feature 标准化单位方差

sc =StandardScaler()

x_train_std=sc.fit_transform(x_train)

x_test_std=sc.fit_transform(x_test)

lda= LDA(n_components=2)

lr=LogisticRegression()

x_train_lda= lda.fit_transform(x_train_std, y_train) #LDA是有监督方法,需要用到标签

x_test_lda = lda.fit_transform(x_test_std, y_test) #预测时候特征向量正负问题,乘-1反转镜像

lr.fit(x_train_lda, y_train)

plt.figure(figsize=(6, 7), dpi=100) #画图高宽,像素

plt.subplot(2, 1, 1)

plot_decision_regions(x_train_lda, y_train, classifier=lr)

plt.title('Training Result')

plt.xlabel('LD1')

plt.ylabel('LD2')

plt.legend(loc='lower left')

plt.subplot(2, 1, 2)

plot_decision_regions(x_test_lda, y_test, classifier=lr)

plt.title('Testing Result')

plt.xlabel('LD1')

plt.ylabel('LD2')

plt.legend(loc='lower left')

plt.tight_layout()#子图间距

plt.show()if __name__ == '__main__':

main()

五、降维压缩数据技术总结

至此,数据降维压缩的技术学习告一段落,经过这次学习,我感觉到一次比较系统的学习会收获更多,此次学习了主成分分析(PCA)和线性判别分析(LDA),这两种经典的数据降维技术各有特点。

前者是无监督技术,忽略分类标签,寻找最大化方差方向提取主成分;后者是有监督技术,训练时候考虑分类标签,在线性特征空间最大化类的可分性。应用场景也各有优势,PCA在图像识别应用好,LDA在特征提取方面更有优势。

这里列出这次学习过程的博文记录,方便查找:

版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值